Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 54(11): 3827-38, 2011 Jun 09.
Article in English | MEDLINE | ID: mdl-21568322

ABSTRACT

Epigenetic mechanisms of gene regulation have a profound role in normal development and disease processes. An integral part of this mechanism occurs through lysine acetylation of histone tails which are recognized by bromodomains. While the biological and structural characterization of many bromodomain containing proteins has advanced considerably, the therapeutic tractability of this protein family is only now becoming understood. This paper describes the discovery and molecular characterization of potent (nM) small molecule inhibitors that disrupt the function of the BET family of bromodomains (Brd2, Brd3, and Brd4). By using a combination of phenotypic screening, chemoproteomics, and biophysical studies, we have discovered that the protein-protein interactions between bromodomains and acetylated histones can be antagonized by selective small molecules that bind at the acetylated lysine recognition pocket. X-ray crystal structures of compounds bound into bromodomains of Brd2 and Brd4 elucidate the molecular interactions of binding and explain the precisely defined stereochemistry required for activity.


Subject(s)
Apolipoprotein A-I/genetics , Benzodiazepines/metabolism , Benzodiazepines/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Acetylation , Amino Acid Sequence , Apolipoprotein A-I/chemistry , Apolipoprotein A-I/metabolism , Benzodiazepines/chemical synthesis , Benzodiazepines/chemistry , Binding Sites , Crystallography, X-Ray , Drug Discovery , Epigenomics , Hep G2 Cells , Histones/chemistry , Histones/genetics , Histones/metabolism , Humans , Lysine/chemistry , Lysine/genetics , Lysine/metabolism , Models, Molecular , Molecular Sequence Data , Molecular Structure , Molecular Targeted Therapy , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Stereoisomerism , Transcription Factors , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...