Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Am J Physiol Heart Circ Physiol ; 326(6): H1366-H1385, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38578240

ABSTRACT

Deterioration of physiological systems, like the cardiovascular system, occurs progressively with age impacting an individual's health and increasing susceptibility to injury and disease. Cellular senescence has an underlying role in age-related alterations and can be triggered by natural aging or prematurely by stressors such as the bacterial toxin lipopolysaccharide (LPS). The metabolism of polyunsaturated fatty acids by CYP450 enzymes produces numerous bioactive lipid mediators that can be further metabolized by soluble epoxide hydrolase (sEH) into diol metabolites, often with reduced biological effects. In our study, we observed age-related cardiac differences in female mice, where young mice demonstrated resistance to LPS injury, and genetic deletion or pharmacological inhibition of sEH using trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid attenuated LPS-induced cardiac dysfunction in aged female mice. Bulk RNA-sequencing analyses revealed transcriptomics differences in aged female hearts. The confirmatory analysis demonstrated changes to inflammatory and senescence gene markers such as Il-6, Mcp1, Il-1ß, Nlrp3, p21, p16, SA-ß-gal, and Gdf15 were attenuated in the hearts of aged female mice where sEH was deleted or inhibited. Collectively, these findings highlight the role of sEH in modulating the aging process of the heart, whereby targeting sEH is cardioprotective.NEW & NOTEWORTHY Soluble epoxide hydrolase (sEH) is an essential enzyme for converting epoxy fatty acids to their less bioactive diols. Our study suggests deletion or inhibition of sEH impacts the aging process in the hearts of female mice resulting in cardioprotection. Data indicate targeting sEH limits inflammation, preserves mitochondria, and alters cellular senescence in the aged female heart.


Subject(s)
Aging , Epoxide Hydrolases , Lipopolysaccharides , Animals , Female , Mice , Age Factors , Aging/metabolism , Cellular Senescence/drug effects , Epoxide Hydrolases/metabolism , Epoxide Hydrolases/genetics , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Sex Factors
2.
Front Immunol ; 14: 1220081, 2023.
Article in English | MEDLINE | ID: mdl-37622121

ABSTRACT

Tripartite motif (TRIM) proteins are involved in development, innate immunity, and viral restriction. TRIM gene repertoires vary between species, likely due to diversification caused by selective pressures from pathogens; however, this has not been explored in birds. We mined a de novo assembled transcriptome for the TRIM gene repertoire of the domestic mallard duck (Anas platyrhynchos), a reservoir host of influenza A viruses. We found 57 TRIM genes in the duck, which represent all 12 subfamilies based on their C-terminal domains. Members of the C-IV subfamily with C-terminal PRY-SPRY domains are known to augment immune responses in mammals. We compared C-IV TRIM proteins between reptiles, birds, and mammals and show that many C-IV subfamily members have arisen independently in these lineages. A comparison of the MHC-linked C-IV TRIM genes reveals expansions in birds and reptiles. The TRIM25 locus with related innate receptor modifiers is adjacent to the MHC in reptile and marsupial genomes, suggesting the ancestral organization. Within the avian lineage, both the MHC and TRIM25 loci have undergone significant TRIM gene reorganizations and divergence, both hallmarks of pathogen-driven selection. To assess the expression of TRIM genes, we aligned RNA-seq reads from duck tissues. C-IV TRIMs had high relative expression in immune relevant sites such as the lung, spleen, kidney, and intestine, and low expression in immune privileged sites such as in the brain or gonads. Gene loss and gain in the evolution of the TRIM repertoire in birds suggests candidate immune genes and potential targets of viral subversion.


Subject(s)
Influenza A virus , Marsupialia , Animals , Ducks/genetics , Brain , Gonads , Immunity, Innate , Influenza A virus/genetics
3.
J Virol ; 96(18): e0077622, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36069546

ABSTRACT

The nonstructural protein 1 (NS1) of influenza A viruses is an important virulence factor that controls host cell immune responses. In human cells, NS1 proteins inhibit the induction of type I interferon by several mechanisms, including potentially, by preventing the activation of the retinoic acid-inducible gene I (RIG-I) receptor by the ubiquitin ligase tripartite motif-containing protein 25 (TRIM25). It is unclear whether the inhibition of human TRIM25 is a universal function of all influenza A NS1 proteins or is strain dependent. It is also unclear if NS1 proteins similarly target the TRIM25 of mallard ducks, a natural reservoir host of avian influenza viruses with a long coevolutionary history and unique disease dynamics. To answer these questions, we compared the ability of five different NS1 proteins to interact with human and duck TRIM25 using coimmunoprecipitation and microscopy and assessed the consequence of this on RIG-I ubiquitination and signaling in both species. We show that NS1 proteins from low-pathogenic and highly pathogenic avian influenza viruses potently inhibit RIG-I ubiquitination and reduce interferon promoter activity and interferon-beta protein secretion in transfected human cells, while the NS1 of the mouse-adapted PR8 strain does not. However, all the NS1 proteins, when cloned into recombinant viruses, suppress interferon in infected alveolar cells. In contrast, avian NS1 proteins do not suppress duck RIG-I ubiquitination and interferon promoter activity, despite interacting with duck TRIM25. IMPORTANCE Influenza A viruses are a major cause of human and animal disease. Periodically, avian influenza viruses from wild waterfowl, such as ducks, pass through intermediate agricultural hosts and emerge into the human population as zoonotic diseases with high mortality rates and epidemic potential. Because of their coevolution with influenza A viruses, ducks are uniquely resistant to influenza disease compared to other birds, animals, and humans. Here, we investigate a mechanism of influenza A virus interference in an important antiviral signaling pathway that is orthologous in humans and ducks. We show that NS1 proteins from four avian influenza strains can block the coactivation and signaling of the human RIG-I antiviral receptor, while none block the coactivation and signaling of duck RIG-I. Understanding host-pathogen dynamics in the natural reservoir will contribute to our understanding of viral disease mechanisms, viral evolution, and the pressures that drive it, which benefits global surveillance and outbreak prevention.


Subject(s)
Avian Proteins , Influenza A virus , Influenza in Birds , Interferon-beta , Receptors, Retinoic Acid , Signal Transduction , Viral Nonstructural Proteins , Animals , Antiviral Agents/metabolism , Avian Proteins/metabolism , Ducks , Humans , Influenza A virus/genetics , Interferon Type I/metabolism , Interferon-beta/metabolism , Mice , Receptors, Retinoic Acid/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitination , Viral Nonstructural Proteins/metabolism
4.
Mol Biol Evol ; 39(8)2022 08 03.
Article in English | MEDLINE | ID: mdl-35880574

ABSTRACT

Animal species differ considerably in their ability to fight off infections. Finding the genetic basis of these differences is not easy, as the immune response is comprised of a complex network of proteins that interact with one another to defend the body against infection. Here, we used population- and comparative genomics to study the evolutionary forces acting on the innate immune system in natural hosts of the avian influenza virus (AIV). For this purpose, we used a combination of hybrid capture, next- generation sequencing and published genomes to examine genetic diversity, divergence, and signatures of selection in 127 innate immune genes at a micro- and macroevolutionary time scale in 26 species of waterfowl. We show across multiple immune pathways (AIV-, toll-like-, and RIG-I -like receptors signalling pathways) that genes involved genes in pathogen detection (i.e., toll-like receptors) and direct pathogen inhibition (i.e., antimicrobial peptides and interferon-stimulated genes), as well as host proteins targeted by viral antagonist proteins (i.e., mitochondrial antiviral-signaling protein, [MAVS]) are more likely to be polymorphic, genetically divergent, and under positive selection than other innate immune genes. Our results demonstrate that selective forces vary across innate immune signaling signalling pathways in waterfowl, and we present candidate genes that may contribute to differences in susceptibility and resistance to infectious diseases in wild birds, and that may be manipulated by viruses. Our findings improve our understanding of the interplay between host genetics and pathogens, and offer the opportunity for new insights into pathogenesis and potential drug targets.


Subject(s)
Immunity, Innate , Influenza A virus , Animals , Birds , Genomics , Immune System , Immunity, Innate/genetics , Influenza A virus/genetics
5.
Viruses ; 14(5)2022 05 05.
Article in English | MEDLINE | ID: mdl-35632712

ABSTRACT

Zika virus (ZIKV) establishes persistent infections in multiple human tissues, a phenomenon that likely plays a role in its ability to cause congenital birth defects and neurological disease. Multiple nonstructural proteins encoded by ZIKV, in particular NS5, are known to suppress the interferon (IFN) response by attacking different steps in this critical antiviral pathway. Less well known are the potential roles of structural proteins in affecting the host immune response during ZIKV infection. Capsid proteins of flaviviruses are of particular interest because a pool of these viral proteins is targeted to the nuclei during infection and, as such, they have the potential to affect host cell gene expression. In this study, RNA-seq analyses revealed that capsid proteins from six different flaviviruses suppress expression of type I IFN and IFN-stimulated genes. Subsequent interactome and in vitro ubiquitination assays showed that ZIKV capsid protein binds to and prevents activating ubiquitination of RIG-I CARD domains by TRIM25, a host factor that is important for the induction arm of the IFN response. The other flavivirus capsid proteins also interacted with TRIM25, suggesting that these viral proteins may attenuate antiviral signaling pathways at very early stages of infection, potentially even before nonstructural proteins are produced.


Subject(s)
Capsid Proteins , Interferons , Zika Virus Infection , Capsid Proteins/genetics , Capsid Proteins/metabolism , Humans , Interferons/immunology , Viral Nonstructural Proteins/genetics , Zika Virus/metabolism , Zika Virus/physiology , Zika Virus Infection/immunology
6.
Immunogenetics ; 74(1): 149-165, 2022 02.
Article in English | MEDLINE | ID: mdl-35059779

ABSTRACT

Birds are important hosts for many RNA viruses, including influenza A virus, Newcastle disease virus, West Nile virus and coronaviruses. Innate defense against RNA viruses in birds involves detection of viral RNA by pattern recognition receptors. Several receptors of different classes are involved, such as endosomal toll-like receptors and cytoplasmic retinoic acid-inducible gene I-like receptors, and their downstream adaptor proteins. The function of these receptors and their antagonism by viruses is well established in mammals; however, this has received less attention in birds. These receptors have been characterized in a few bird species, and the completion of avian genomes will permit study of their evolution. For each receptor, functional work has established ligand specificity and activation by viral infection. Engagement of adaptors, regulation by modulators and the supramolecular organization of proteins required for activation are incompletely understood in both mammals and birds. These receptors bind conserved nucleic acid agonists such as single- or double-stranded RNA and generally show purifying selection, particularly the ligand binding regions. However, in birds, these receptors and adaptors differ between species, and between individuals, suggesting that they are under selection for diversification over time. Avian receptors and signalling pathways, like their mammalian counterparts, are targets for antagonism by a variety of viruses, intent on escape from innate immune responses.


Subject(s)
Influenza A virus , RNA , Animals , Birds/genetics , Humans , Immunity, Innate/genetics , Influenza A virus/genetics , Ligands , Mammals/genetics
7.
Front Immunol ; 12: 786205, 2021.
Article in English | MEDLINE | ID: mdl-34804075

ABSTRACT

Ducks are the natural host and reservoir of influenza A virus (IAV), and as such are permissive to viral replication while being unharmed by most strains. It is not known which mechanisms of viral control are globally regulated during infection, and which are specific to tissues during infection. Here we compare transcript expression from tissues from Pekin ducks infected with a recombinant H5N1 strain A/Vietnam 1203/04 (VN1203) or an H5N2 strain A/British Columbia 500/05 using RNA-sequencing analysis and aligning reads to the NCBI assembly ZJU1.0 of the domestic duck (Anas platyrhynchos) genome. Highly pathogenic VN1203 replicated in lungs and showed systemic dissemination, while BC500, like most low pathogenic strains, replicated in the intestines. VN1203 infection induced robust differential expression of genes all three days post infection, while BC500 induced the greatest number of differentially expressed genes on day 2 post infection. While there were many genes globally upregulated in response to either VN1203 or BC500, tissue specific gene expression differences were observed. Lungs of ducks infected with VN1203 and intestines of birds infected with BC500, tissues important in influenza replication, showed highest upregulation of pattern recognition receptors and interferon stimulated genes early in the response. These tissues also appear to have specific downregulation of inflammatory components, with downregulation of distinct sets of proinflammatory cytokines in lung, and downregulation of key components of leukocyte recruitment and complement pathways in intestine. Our results suggest that global and tissue specific regulation patterns help the duck control viral replication as well as limit some inflammatory responses in tissues involved in replication to avoid damage.


Subject(s)
Ducks/immunology , Gene Expression Regulation/immunology , Influenza in Birds/immunology , Influenza, Human/immunology , Virus Replication/immunology , Animals , Disease Reservoirs/virology , Ducks/genetics , Ducks/virology , Female , Gene Expression Profiling , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N2 Subtype/immunology , Influenza in Birds/genetics , Influenza in Birds/virology , Influenza, Human/transmission , Influenza, Human/virology , Male , Virus Replication/genetics
8.
Front Microbiol ; 12: 693204, 2021.
Article in English | MEDLINE | ID: mdl-34671321

ABSTRACT

The non-structural protein 1 (NS1) of influenza A viruses plays important roles in viral fitness and in the process of interspecies adaptation. It is one of the most polymorphic and mutation-tolerant proteins of the influenza A genome, but its evolutionary patterns in different host species and the selective pressures that underlie them are hard to define. In this review, we highlight some of the species-specific molecular signatures apparent in different NS1 proteins and discuss two functions of NS1 in the process of viral adaptation to new host species. First, we consider the ability of NS1 proteins to broadly suppress host protein expression through interaction with CPSF4. This NS1 function can be spontaneously lost and regained through mutation and must be balanced against the need for host co-factors to aid efficient viral replication. Evidence suggests that this function of NS1 may be selectively lost in the initial stages of viral adaptation to some new host species. Second, we explore the ability of NS1 proteins to inhibit antiviral interferon signaling, an essential function for viral replication without which the virus is severely attenuated in any host. Innate immune suppression by NS1 not only enables viral replication in tissues, but also dampens the adaptive immune response and immunological memory. NS1 proteins suppress interferon signaling and effector functions through a variety of protein-protein interactions that may differ from host to host but must achieve similar goals. The multifunctional influenza A virus NS1 protein is highly plastic, highly versatile, and demonstrates a diversity of context-dependent solutions to the problem of interspecies adaptation.

9.
J Virol ; 95(13): e0026621, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34110264

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. While previous studies have shown that several SARS-CoV-2 proteins can antagonize the interferon (IFN) response, some of the mechanisms by which they do so are not well understood. In this study, we describe two novel mechanisms by which SARS-CoV-2 blocks the IFN pathway. Type I IFNs and IFN-stimulated genes (ISGs) were poorly induced during SARS-CoV-2 infection, and once infection was established, cells were highly resistant to ectopic induction of IFNs and ISGs. Levels of two key IFN signaling pathway components, Tyk2 and STAT2, were significantly lower in SARS-CoV-2-infected cells. Expression of nonstructural protein 1 (NSP1) or nucleocapsid in the absence of other viral proteins was sufficient to block IFN induction, but only NSP1 was able to inhibit IFN signaling. Mapping studies suggest that NSP1 prevents IFN induction in part by blocking IRF3 phosphorylation. In addition, NSP1-induced depletion of Tyk2 and STAT2 dampened ISG induction. Together, our data provide new insights into how SARS-CoV-2 successfully evades the IFN system to establish infection. IMPORTANCE SARS-CoV-2 is the causative agent of COVID-19, a serious disease that can have a myriad of symptoms from loss of taste and smell to pneumonia and hypercoagulation. The rapid spread of SARS-CoV-2 can be attributed in part to asymptomatic transmission, where infected individuals shed large amounts of virus before the onset of disease. This is likely due to the ability of SARS-CoV-2 to effectively suppress the innate immune system, including the IFN response. Indeed, we show that the IFN response is efficiently blocked during SARS-CoV-2 infection, a process that is mediated in large part by nonstructural protein 1 and nucleocapsid. Our study provides new insights on how SARS-CoV-2 evades the IFN response to successfully establish infection. These findings should be considered for the development and administration of therapeutics against SARS-CoV-2.


Subject(s)
Interferon Type I/antagonists & inhibitors , SARS-CoV-2/metabolism , Signal Transduction , Viral Nonstructural Proteins/metabolism , Animals , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/metabolism , HEK293 Cells , Humans , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Phosphoproteins/metabolism , SARS-CoV-2/pathogenicity , STAT2 Transcription Factor/metabolism , TYK2 Kinase/metabolism , Vero Cells
10.
Sci Rep ; 11(1): 10815, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031452

ABSTRACT

Monitoring and early detection of emerging infectious diseases in wild animals is of crucial global importance, yet reliable ways to measure immune status and responses are lacking for animals in the wild. Here we assess the usefulness of bio-loggers for detecting disease outbreaks in free-living birds and confirm detailed responses using leukocyte composition and large-scale transcriptomics. We simulated natural infections by viral and bacterial pathogens in captive mallards (Anas platyrhynchos), an important natural vector for avian influenza virus. We show that body temperature, heart rate and leukocyte composition change reliably during an acute phase immune response. Using genome-wide gene expression profiling of whole blood across time points we confirm that immunostimulants activate pathogen-specific gene regulatory networks. By reporting immune response related changes in physiological and behavioural traits that can be studied in free-ranging populations, we provide baseline information with importance to the global monitoring of zoonotic diseases.


Subject(s)
Anseriformes/immunology , Gene Expression Profiling/veterinary , Gene Regulatory Networks , Influenza A virus/immunology , Influenza in Birds/diagnosis , Animals , Anseriformes/blood , Anseriformes/genetics , Avian Proteins/genetics , Blood Chemical Analysis , Body Temperature , Computer Simulation , Gene Expression Regulation , Heart Rate , High-Throughput Nucleotide Sequencing , Influenza in Birds/genetics , Influenza in Birds/immunology , Population Surveillance , Sequence Analysis, RNA , Exome Sequencing
11.
Trop Med Infect Dis ; 5(4)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33218113

ABSTRACT

Lyme disease-causing Borrelia burgdorferi has been reported in 10-19% of Ixodes ticks from Alberta, Canada, where the tick vector Ixodes scapularis is at the northwestern edge of its range. However, the presence of Borrelia has not been verified independently, and the bacterial microbiome of these ticks has not been described. We performed 16S rRNA bacterial surveys on female I. scapularis from Alberta that were previously qPCR-tested in a Lyme disease surveillance program. Both 16S and qPCR methods were concordant for the presence of Borrelia. The 16S studies also provided a profile of associated bacteria that showed the microbiome of I. scapularis in Alberta was similar to other areas of North America. Ticks that were qPCR-positive for Borrelia had significantly greater bacterial diversity than Borrelia-negative ticks, on the basis of generalized linear model testing. This study adds value to ongoing tick surveillance and is a foundation for deeper understanding of tick microbial ecology and disease transmission in a region where I. scapularis range expansion, induced by climate and land use changes, is likely to have increasing public health implications.

12.
Ticks Tick Borne Dis ; 11(6): 101535, 2020 11.
Article in English | MEDLINE | ID: mdl-32993944

ABSTRACT

The bacterial microbiome of ticks is notoriously diverse, but the factors leading to this diversity are poorly understood. We sequenced bacterial 16S rRNA amplicons from individual winter ticks, Dermacentor albipictus, to assess whether their one-host life cycle is associated with reduced bacterial diversity. On average, about 100 bacterial genera were found for individual ticks. Francisella-like endosymbiont (FLE) dominated bacterial communities, particularly in female ticks and in ticks that had fed. The remainder of the winter tick microbiome was highly variable. In addition to FLE, the main bacterial genera associated with winter ticks on elk were Pseudomonas, Ehrlichia, Asinibacterium, Acinetobacter and Streptococcus, although sequences associated with hundreds of other minor bacterial genera were detected. A complex interaction between richness and evenness was revealed in comparisons among tick life stages, using the Hill number series to show trends in diversity with decreasing emphasis on rare members of the assemblage. Male ticks had a significantly greater number of bacterial genera than females or nymphs, while males had greater evenness than females and similar evenness to nymphs. We intentionally sampled ticks from a single host species, North American elk, from a single location in Alberta, Canada, to constrain the ecological and blood meal variation that individuals experience through their life cycle. In spite of this, we found that the number of bacterial genera detected in this one-host tick system was remarkably diverse. The high taxonomic variability of the minor components of the winter tick microbiome suggests that this part of their microbiome diversity should be examined for functional significance.


Subject(s)
Bacteria/isolation & purification , Dermacentor/microbiology , Microbiota/genetics , Alberta , Animals , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis
13.
Article in English | MEDLINE | ID: mdl-32477965

ABSTRACT

Mallard ducks are a natural host and reservoir of avian Influenza A viruses. While most influenza strains can replicate in mallards, the virus typically does not cause substantial disease in this host. Mallards are often resistant to disease caused by highly pathogenic avian influenza viruses, while the same strains can cause severe infection in humans, chickens, and even other species of ducks, resulting in systemic spread of the virus and even death. The differences in influenza detection and antiviral effectors responsible for limiting damage in the mallards are largely unknown. Domestic mallards have an early and robust innate response to infection that seems to limit replication and clear highly pathogenic strains. The regulation and timing of the response to influenza also seems to circumvent damage done by a prolonged or dysregulated immune response. Rapid initiation of innate immune responses depends on viral recognition by pattern recognition receptors (PRRs) expressed in tissues where the virus replicates. RIG-like receptors (RLRs), Toll-like receptors (TLRs), and Nod-like receptors (NLRs) are all important influenza sensors in mammals during infection. Ducks utilize many of the same PRRs to detect influenza, namely RIG-I, TLR7, and TLR3 and their downstream adaptors. Ducks also express many of the same signal transduction proteins including TBK1, TRIF, and TRAF3. Some antiviral effectors expressed downstream of these signaling pathways inhibit influenza replication in ducks. In this review, we summarize the recent advances in our understanding of influenza recognition and response through duck PRRs and their adaptors. We compare basal tissue expression and regulation of these signaling components in birds, to better understand what contributes to influenza resistance in the duck.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Chickens , Ducks , Humans , Immunity, Innate , Receptors, Pattern Recognition , Signal Transduction
14.
Viruses ; 12(4)2020 04 07.
Article in English | MEDLINE | ID: mdl-32272772

ABSTRACT

RIG-I plays an essential role in the duck innate immune response to influenza infection. RIG-I engages the critical adaptor protein mitochondrial antiviral signaling (MAVS) to activate the downstream signaling pathway. The influenza A virus non-structural protein PB1-F2 interacts with MAVS in human cells to inhibit interferon production. As duck and human MAVS share only 28% amino acid similarity, it is not known whether the influenza virus can similarly inhibit MAVS signaling in avian cells. Using confocal microscopy we show that MAVS and the constitutively active N-terminal end of duck RIG-I (2CARD) co-localize in DF-1 cells, and duck MAVS is pulled down with GST-2CARD. We establish that either GST-2CARD, or duck MAVS can initiate innate signaling in chicken cells and their co-transfection augments interferon-beta promoter activity. Demonstrating the limits of cross-species interactions, duck RIG-I 2CARD initiates MAVS signaling in chicken cells, but works poorly in human cells. The D122A mutation of human 2CARD abrogates signaling by affecting MAVS engagement, and the reciprocal A120D mutation in duck 2CARD improves signaling in human cells. We show mitochondrial localization of PB1-F2 from influenza A virus strain A/Puerto Rico/8/1934 (H1N1; PR8), and its co-localization and co-immunoprecipitation with duck MAVS. PB1-F2 inhibits interferon-beta promoter activity induced by overexpression of either duck RIG-I 2CARD, full-length duck RIG-I, or duck MAVS. Finally, we show that the effect of PB1-F2 on mitochondria abrogates TRIM25-mediated ubiquitination of RIG-I CARD in both human and avian cells, while an NS1 variant from the PR8 influenza virus strain does not.


Subject(s)
CARD Signaling Adaptor Proteins/immunology , Immunity, Innate , Influenza A Virus, H1N1 Subtype/immunology , Signal Transduction , Viral Proteins/immunology , Animals , CARD Signaling Adaptor Proteins/genetics , Chickens , Ducks/immunology , Ducks/virology , Fibroblasts , HEK293 Cells , Humans , Mitochondria/immunology , Receptors, Retinoic Acid/immunology , Receptors, Retinoic Acid/metabolism , Ubiquitination , Viral Proteins/genetics
15.
Vet Sci ; 6(1)2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30634569

ABSTRACT

Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host⁻pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.

16.
Vet Microbiol ; 228: 101-111, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30593354

ABSTRACT

Ducks are the reservoir host of influenza A viruses, and are permissive for replication of most strains, yet can elicit robust innate immune responses to highly pathogenic strains. Tissue tropism and viral amino acid differences affect virulence, but we have limited knowledge about how viral differences influence the host innate immune response. Here we compare the innate immune response in Pekin ducks to a recombinant highly-pathogenic avian influenza (HPAI) H5N1 virus and a naturally arising attenuated variant of this strain that differs at one amino acid in polymerase A (T515A), as well as ducks infected with two different H5 strains of low pathogenic avian influenza (LPAI). Using qPCR we examined the relative abundance of transcripts for RIG-I and interferon-beta (IFNß), and downstream interferon stimulated genes (ISGs). The polymerase PA (T515A) mutation did not significantly affect replication in vivo but greatly attenuated host interferon responses. ISG induction was robust for both H5N1 strains, but was three times lower for the PA mutant strain. Low pathogenic viruses elicited detectable induction of RIG-I, IFNß and ISGs in lung and intestine tissues that correlated with the recovery of viruses from tracheal or cloacal swabs. Several genes in the MAVS signaling pathway were also upregulated by H5N1, which contributed to further amplification of the signal. We also examined hematoxylin-eosin stained tissue sections and observe evidence of lung pathology and splenocyte depletion with both H5N1 viruses at 3 dpi, and recovery by 6 dpi. However, for both H5N1 strains we observed inflammation around neurons in brain, with increased cytokine expression in some individuals. Our findings reveal HPAI H5N1 viruses induced stronger innate immune responses to the infection, while LPAI viruses elicit a milder response.


Subject(s)
Ducks/virology , Immunity, Innate , Influenza A Virus, H5N1 Subtype/immunology , Influenza in Birds/immunology , Poultry Diseases/immunology , Animals , Cytokines/immunology , Female , Gene Expression Regulation , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza in Birds/virology , Interferon-beta/immunology , Male , Poultry Diseases/virology
17.
Mol Immunol ; 103: 156-165, 2018 11.
Article in English | MEDLINE | ID: mdl-30286408

ABSTRACT

Retinoic acid inducible gene-I (RIG-I) is a cytoplasmic RNA sensor for detecting a variety of RNA viruses including influenza A viruses. Detection ultimately produces Type I interferon (IFN), which stimulates expression of interferon stimulated genes (ISGs), including RIG-I itself in a positive feedback loop. The structure and function of RIG-I is conserved across phylogeny, despite significant protein sequence divergence, however, the promoter sequences do not show the expected phylogenetic relationships and it is not known whether they are similarly regulated. We previously cloned duck RIG-I and showed it is highly induced during influenza A infection consistent with induction by the interferon produced. Here, we identified the Pekin duck RIG-I promoter and constructed promoter reporter vectors, which we transfected into duck embryonic fibroblasts or chicken DF-1 cells and tested in dual luciferase assays. We showed that activation of the Mitochondrial Antiviral Signalling (MAVS) pathway using the constitutively active N-terminal region of RIG-I or polyinosinic-polycytidylic acid (poly I:C) led to stimulation of duck RIG-I promoter activity. Using deletion constructs we showed the core promoter lies in the proximal 250 basepairs, and we identified essential cis-regulatory elements, a GC-box and an interferon-sensitive response element (ISRE), responsible for basal and inducible expression, respectively. Using mCherry-tagged interferon regulatory factors (IRFs) cloned from chickens and ducks, we show overexpression of chIRF7 induced the duck RIG-I promoter, and this required the ISRE site. Finally, we also demonstrated that overexpressed chIRF7 translocated to the nucleus, which was augmented by MAVS activation using RIG-I 2CARD. Our findings demonstrate that RIG-I expression is induced by chIRF7, in a positive regulatory loop. These studies show that the duck RIG-I promoter is appropriately regulated in chicken cells, necessary for the potential generation of transgenic chickens expressing RIG-I.


Subject(s)
Avian Proteins/genetics , DEAD Box Protein 58/genetics , Gene Expression Regulation/genetics , Promoter Regions, Genetic/genetics , Animals , Avian Proteins/classification , Base Sequence , Cells, Cultured , DEAD Box Protein 58/classification , Ducks , Embryo, Nonmammalian/cytology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Mutation , Phylogeny , Poly I-C/pharmacology , Signal Transduction/genetics
18.
J Gen Virol ; 99(4): 464-474, 2018 04.
Article in English | MEDLINE | ID: mdl-29458524

ABSTRACT

Ducks, the reservoir host, are generally permissive to influenza A virus infection without disease symptoms. This natural ecology was upset by the emergence of H5N1 strains, which can kill ducks. To better understand host-virus interactions in the reservoir host, and influenza strain-specific molecular contributions to virulence, we infected White Pekin ducks with three similar H5N1 viruses, with known differences in pathogenicity and replication rate. We quantified viral replication and innate immune gene activation by qPCR, in lung and spleen tissues, isolated on each of the first 3 days of infection. The three viruses replicated well, as measured by accumulation of matrix gene transcript, and viral load declined over time in the spleen. The ducks produced rapid, but temporally limited, IFN and cytokine responses, peaking on the first day post-infection. IFN and proinflammatory cytokine gene induction were greater in response to infection with the more lethal viruses, compared to an attenuated strain. We conclude that a well-regulated IFN response, with the ability to overcome early viral immune inhibition, without hyperinflammation, contributes to the ability of ducks to survive H5N1 influenza replication in their airways, and yet clear systemic infection and limit disease.


Subject(s)
Cytokines/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza in Birds/immunology , Interferons/immunology , Poultry Diseases/immunology , Animals , Cytokines/genetics , Ducks , Influenza A Virus, H5N1 Subtype/physiology , Influenza in Birds/genetics , Influenza in Birds/virology , Interferons/genetics , Poultry Diseases/genetics , Poultry Diseases/virology , Virulence , Virus Replication
19.
J Immunol ; 197(4): 1212-20, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27430716

ABSTRACT

In many nonmammalian vertebrates, the genomic organization of the MHC class I region leads to biased expression of a single classical MHC class I gene coevolving with TAP transporters, whereas class I genes are poorly expressed. This contrasts to the three codominantly expressed classical MHC class I genes in humans and mice. In a sequenced haplotype from White Pekin duck, Anas platyrhynchos, there is one predominantly expressed MHC class I, UAA, although they have five MHC class I genes in the complex, arranged TAP1-TAP2-UAA-UBA-UCA-UDA-UEA The UAA gene, situated proximal to the TAP2 gene, is expressed at levels 10-fold greater than that of another expressed gene, UDA. Three duck MHC class I genes (UBA, UCA, and UEA) are predicted to be partially or completely inactivated by promoter defects, introduction of in-frame stop codon, or the lack of a polyadenylation signal. In this study, we confirm that UBA, UCA, and UEA are indeed inactivated through genetic defects at the promoter, whereas UAA and UDA have functionally equivalent promoters. To examine promoter accessibility, we performed bisulfite sequencing and show that none of the MHC class I promoters are inactivated by methylation. We determine that UDA is differentially regulated through its 3' untranslated region. Namely, expression of UDA is downregulated by let-7 microRNA, whereas the predominantly expressed MHC class I UAA is not. Regulation of UDA by let-7 microRNA suggests that the lower expression level is maintained for its function in immunity.


Subject(s)
Ducks/genetics , Ducks/immunology , Gene Expression Regulation/genetics , Genes, MHC Class I/genetics , MicroRNAs/genetics , Animals , Histocompatibility Antigens Class I/genetics , Promoter Regions, Genetic , Reverse Transcriptase Polymerase Chain Reaction , Transcriptome
20.
J Immunol ; 197(3): 783-94, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27342841

ABSTRACT

MHC class I is critically involved in defense against viruses, and diversity from polygeny and polymorphism contributes to the breadth of the immune response and health of the population. In this article, we examine MHC class I diversity in wild mallard ducks, the natural host and reservoir of influenza A viruses. We previously showed domestic ducks predominantly use UAA, one of five MHC class I genes, but whether biased expression is also true for wild mallards is unknown. Using RT-PCR from blood, we examined expressed MHC class I alleles from 38 wild mallards (Anas platyrhynchos) and identified 61 unique alleles, typically 1 or 2 expressed alleles in each individual. To determine whether expressed alleles correspond to UAA adjacent to TAP2 as in domestic ducks, we cloned and sequenced genomic UAA-TAP2 fragments from all mallards, which matched transcripts recovered and allowed us to assign most alleles as UAA Allelic differences are primarily located in α1 and α2 domains in the residues known to interact with peptide in mammalian MHC class I, suggesting the diversity is functional. Most UAA alleles have unique residues in the cleft predicting distinct specificity; however, six alleles have an unusual conserved cleft with two cysteine residues. Residues that influence peptide-loading properties and tapasin involvement in chicken are fixed in duck alleles and suggest tapasin independence. Biased expression of one MHC class I gene may make viral escape within an individual easy, but high diversity in the population places continual pressure on the virus in the reservoir species.


Subject(s)
Ducks/genetics , Ducks/immunology , Genes, MHC Class I/genetics , Genes, MHC Class I/immunology , Alleles , Animals , Genotype , Polymorphism, Genetic , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...