Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Hum Genet ; 28(8): 1098-1110, 2020 08.
Article in English | MEDLINE | ID: mdl-32238911

ABSTRACT

Several types of genetic alterations occurring at numerous loci have been described in attention deficit hyperactivity disorder (ADHD). However, the role of rare single nucleotide variants (SNVs) remains under investigated. Here, we sought to identify rare SNVs with predicted deleterious effect that may contribute to ADHD risk. We chose to study ADHD families (including multi-incident) from a population with a high rate of consanguinity in which genetic risk factors tend to accumulate and therefore increasing the chance of detecting risk alleles. We employed whole exome sequencing (WES) to interrogate the entire coding region of 16 trios with ADHD. We also performed enrichment analysis on our final list of genes to identify the overrepresented biological processes. A total of 32 rare variants with predicted damaging effect were identified in 31 genes. At least two variants were detected per proband, most of which were not exclusive to the affected individuals. In addition, the majority of our candidate genes have not been previously described in ADHD including five genes (NEK4, NLE1, PSRC1, PTP4A3, and TMEM183A) that were not previously described in any human condition. Moreover, enrichment analysis highlighted brain-relevant biological themes such as "Glutamatergic synapse", "Cytoskeleton organization", and "Ca2+ pathway". In conclusion, our findings are in keeping with prior studies demonstrating the highly challenging genetic architecture of ADHD involving low penetrance, variable expressivity and locus heterogeneity.


Subject(s)
Attention Deficit Disorder with Hyperactivity/genetics , Genetic Loci , Multifactorial Inheritance , Adolescent , Adult , Child , Exome , Female , Genetic Predisposition to Disease , Humans , Male , Membrane Proteins/genetics , NIMA-Related Kinases/genetics , Neoplasm Proteins/genetics , Pedigree , Phosphoproteins/genetics , Polymorphism, Genetic , Protein Tyrosine Phosphatases/genetics
2.
PLoS One ; 10(8): e0135950, 2015.
Article in English | MEDLINE | ID: mdl-26274610

ABSTRACT

Parkinson's disease (PD) is one of the major causes of parkinsonism syndrome. Its characteristic motor symptoms are attributable to dopaminergic neurons loss in the midbrain. Genetic advances have highlighted underlying molecular mechanisms and provided clues to potential therapies. However, most of the studies focusing on the genetic component of PD have been performed on American, European and Asian populations, whereas Arab populations (excluding North African Arabs), particularly Saudis remain to be explored. Here we investigated the genetic causes of PD in Saudis by recruiting 98 PD-cases (sporadic and familial) and screening them for potential pathogenic mutations in PD-established genes; SNCA, PARKIN, PINK1, PARK7/DJ1, LRRK2 and other PD-associated genes using direct sequencing. To our surprise, the screening revealed only three pathogenic point mutations; two in PINK1 and one in PARKIN. In addition to mutational analysis, CNV and cDNA analysis was performed on a subset of patients. Exon/intron dosage alterations in PARKIN were detected and confirmed in 2 cases. Our study suggests that mutations in the ORF of the screened genes are not a common cause of PD in Saudi population; however, these findings by no means exclude the possibility that other genetic events such as gene expression/dosage alteration may be more common nor does it eliminate the possibility of the involvement of novel genes.


Subject(s)
Mutation , Parkinson Disease/genetics , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Saudi Arabia
SELECTION OF CITATIONS
SEARCH DETAIL
...