Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 292(43): 17963-17974, 2017 10 27.
Article in English | MEDLINE | ID: mdl-28860188

ABSTRACT

Aberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders, such as cancer, fibrosis, immune dysregulation, and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention. However, a long history of failed clinical trials has demonstrated that broad-spectrum MMP inhibitors have limited clinical utility, which has spurred the development of inhibitors selective for individual MMPs. Attaining selectivity has been technically challenging because of sequence and structural conservation across the various MMPs. Here, through a biochemical and structural screening paradigm, we have identified JNJ0966, a highly selective compound that inhibited activation of MMP-9 zymogen and subsequent generation of catalytically active enzyme. JNJ0966 had no effect on MMP-1, MMP-2, MMP-3, MMP-9, or MMP-14 catalytic activity and did not inhibit activation of the highly related MMP-2 zymogen. The molecular basis for this activity was characterized as an interaction of JNJ0966 with a structural pocket in proximity to the MMP-9 zymogen cleavage site near Arg-106, which is distinct from the catalytic domain. JNJ0966 was efficacious in reducing disease severity in a mouse experimental autoimmune encephalomyelitis model, demonstrating the viability of this therapeutic approach. This discovery reveals an unprecedented pharmacological approach to MMP inhibition, providing an opportunity to improve selectivity of future clinical drug candidates. Targeting zymogen activation in this manner may also allow for pharmaceutical exploration of other enzymes previously viewed as intractable drug targets.


Subject(s)
Enzyme Precursors/antagonists & inhibitors , Enzyme Precursors/chemistry , Matrix Metalloproteinase 9/chemistry , Matrix Metalloproteinase Inhibitors/chemistry , Allosteric Regulation , Animals , COS Cells , Catalytic Domain , Chlorocebus aethiops , Enzyme Precursors/genetics , Enzyme Precursors/metabolism , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Protein Domains
2.
Protein Eng Des Sel ; 28(10): 385-93, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26275855

ABSTRACT

A number of classes of proteins have been engineered for high stability using consensus sequence design methods. Here we describe the engineering of a novel albumin binding domain (ABD) three-helix bundle protein. The resulting engineered ABD molecule, called ABDCon, is expressed at high levels in the soluble fraction of Escherichia coli and is highly stable, with a melting temperature of 81.5°C. ABDCon binds human, monkey and mouse serum albumins with affinity as high as 61 pM. The solution structure of ABDCon is consistent with the three-helix bundle design and epitope mapping studies enabled a precise definition of the albumin binding interface. Fusion of a 10 kDa scaffold protein to ABDCon results in a long terminal half-life of 60 h in mice and 182 h in cynomolgus monkeys. To explore the link between albumin affinity and in vivo exposure, mutations were designed at the albumin binding interface of ABDCon yielding variants that span an 11 000-fold range in affinity. The PK properties of five such variants were determined in mice in order to demonstrate the tunable nature of serum half-life, exposure and clearance with variations in albumin binding affinity.


Subject(s)
Albumins/metabolism , Consensus Sequence , Protein Engineering/methods , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacokinetics , Amino Acid Sequence , Animals , Escherichia coli/genetics , Humans , Mice , Models, Molecular , Molecular Sequence Data , Protein Stability , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism
3.
J Biomol Screen ; 17(5): 629-40, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22496098

ABSTRACT

Endocannabinoids such as 2-arachidonylglycerol (2-AG) are ligands for cannabinoid receptors that contribute to the transmission and modulation of pain signals. The antinociceptive effect of exogenous 2-AG suggests that inhibition of monoglyceride lipase (MGLL), the enzyme responsible for degrading 2-AG and arresting signaling, may be a target for pain modulation. Here we describe the characterization of MGLL ligands following a high-throughput screening campaign. Ligands were discovered using ThermoFluor, a label-free affinity-based screening tool that measures ligand binding via modulation of protein thermal stability. A kinetic fluorescent assay using the substrate 4-methylcoumarin butyrate was used to counterscreen confirmed HTS positives. A comparison of results from binding and inhibition assays allowed elucidation of compound mechanism of action. We demonstrate the limit of each technology and the benefits of using orthogonal assay techniques in profiling compounds.


Subject(s)
Catalytic Domain/drug effects , Enzyme Assays/methods , Enzyme Inhibitors/pharmacology , Monoacylglycerol Lipases/antagonists & inhibitors , Arachidonic Acids/chemistry , Endocannabinoids , Enzyme Inhibitors/chemistry , Glycerides/chemistry , High-Throughput Screening Assays , Humans , Hydrolysis , Inhibitory Concentration 50 , Kinetics , Monoacylglycerol Lipases/chemistry , Monoacylglycerol Lipases/metabolism , Protein Binding , Solubility , Substrate Specificity
4.
Protein Sci ; 20(4): 670-83, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21308848

ABSTRACT

A high-resolution structure of a ligand-bound, soluble form of human monoglyceride lipase (MGL) is presented. The structure highlights a novel conformation of the regulatory lid-domain present in the lipase family as well as the binding mode of a pharmaceutically relevant reversible inhibitor. Analysis of the structure lacking the inhibitor indicates that the closed conformation can accommodate the native substrate 2-arachidonoyl glycerol. A model is proposed in which MGL undergoes conformational and electrostatic changes during the catalytic cycle ultimately resulting in its dissociation from the membrane upon completion of the cycle. In addition, the study outlines a successful approach to transform membrane associated proteins, which tend to aggregate upon purification, into a monomeric and soluble form.


Subject(s)
Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Arachidonic Acids/chemistry , Arachidonic Acids/metabolism , Cannabinoid Receptor Modulators/chemistry , Cannabinoid Receptor Modulators/metabolism , Catalytic Domain , Crystallography, X-Ray , Endocannabinoids , Glycerides/chemistry , Glycerides/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Molecular Structure , Monoacylglycerol Lipases/genetics , Monoacylglycerol Lipases/metabolism , Mutagenesis, Site-Directed , Protein Binding , Static Electricity
6.
J Med Chem ; 48(4): 909-12, 2005 Feb 24.
Article in English | MEDLINE | ID: mdl-15715460

ABSTRACT

HDM2 binds to an alpha-helical transactivation domain of p53, inhibiting its tumor suppressive functions. A miniaturized thermal denaturation assay was used to screen chemical libraries, resulting in the discovery of a novel series of benzodiazepinedione antagonists of the HDM2-p53 interaction. The X-ray crystal structure of improved antagonists bound to HDM2 reveals their alpha-helix mimetic properties. These optimized molecules increase the transcription of p53 target genes and decrease proliferation of tumor cells expressing wild-type p53.


Subject(s)
Benzodiazepines/chemical synthesis , Nuclear Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Tumor Suppressor Protein p53/agonists , Benzodiazepines/chemistry , Benzodiazepines/pharmacology , Binding Sites , Cell Line, Tumor , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Mimicry , Molecular Structure , Proto-Oncogene Proteins c-mdm2 , Stereoisomerism , Structure-Activity Relationship , Tumor Suppressor Protein p53/biosynthesis
7.
Bioorg Med Chem Lett ; 15(3): 765-70, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15664854

ABSTRACT

A library of 1,4-benzodiazepine-2,5-diones was screened for binding to the p53-binding domain of HDM2 using Thermofluor, a miniaturized thermal denaturation assay. The hits obtained were shown to bind to HDM2 in the p53-binding pocket using a fluorescence polarization (FP) peptide displacement assay. The potency of the series was optimized, leading to sub-micromolar antagonists of the p53-HDM2 interaction.


Subject(s)
Benzodiazepines/chemical synthesis , Benzodiazepines/pharmacology , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , Binding Sites , Combinatorial Chemistry Techniques , Fluorescence Polarization , Humans , Inhibitory Concentration 50 , Nuclear Proteins/antagonists & inhibitors , Protein Binding/drug effects , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2 , Structure-Activity Relationship , Tumor Suppressor Protein p53/antagonists & inhibitors
8.
Bioorg Med Chem Lett ; 12(3): 491-5, 2002 Feb 11.
Article in English | MEDLINE | ID: mdl-11814826

ABSTRACT

A study of the S1 binding of lead 5-methylthiothiophene amidine 3, an inhibitor of urokinase-type plasminogen activator, was undertaken by the introduction of a variety of substituents at the thiophene 5-position. The 5-alkyl substituted and unsubstituted thiophenes were prepared using organolithium chemistry. Heteroatom substituents were introduced at the 5-position using a novel displacement reaction of 5-methylsulfonylthiophenes and the corresponding oxygen or sulfur anions. Small alkyl group substitution at the 5-position provided inhibitors equipotent with but possessing improved solubility.


Subject(s)
Amidines/chemical synthesis , Amidines/pharmacology , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/pharmacology , Thiophenes/chemical synthesis , Thiophenes/pharmacology , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Alkylation , Indicators and Reagents , Lithium Compounds/chemistry , Protein Binding , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...