Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sch Psychol ; 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37561428

ABSTRACT

This study explored the relationship between 391 third-grade students' writing productivity and the amount of intervention dosage received over a 6-week period. In addition, the association between gender and the amount of intervention dosage received was examined. Results indicated that intervention dosage had a statistically significant relationship with students' writing productivity at the conclusion of intervention implementation. In addition, there was not a statistically significant difference in the amount of intervention dose received between female and male students. Notably, less intervention dosage may be indicative of higher rates of school absenteeism, which is associated with adverse academic outcomes. Implications and future research directions are discussed. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

2.
Med Devices (Auckl) ; 16: 183-199, 2023.
Article in English | MEDLINE | ID: mdl-37483393

ABSTRACT

Over 400,000 Americans are intubated in emergency settings annually, with indications ranging from respiratory failure to airway obstructions to anaphylaxis. About 12.7% of emergency intubations are unsuccessful on the first attempt. Failure to intubate on the first attempt is associated with a higher likelihood of adverse events, including oxygen desaturation, aspiration, trauma to soft tissue, dysrhythmia, hypotension, and cardiac arrest. Difficult airways, as classified on an established clinical scale, are found in up to 30% of emergency department (ED) patients and are a significant contributor to failure to intubate. Difficult intubations have been associated with longer lengths of stay and significantly greater costs than standard intubations. There exists a wide range of airway management devices, both invasive and noninvasive, which are available in the emergency setting to accommodate difficult airways. Yet, first-pass success rates remain variable and leave room for improvement. In this article, we review the disease states most correlated with intubation, the current landscape of emergency airway management technologies, and the market potential for innovation. The aim of this review is to inspire new technologies to assist difficult airway management, given the substantial opportunity for translation due to two key-value signposts of medical innovation: the potential to decrease cost and the potential to improve clinical outcomes.

3.
Nature ; 620(7974): 660-668, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37380027

ABSTRACT

RNA-guided systems, which use complementarity between a guide RNA and target nucleic acid sequences for recognition of genetic elements, have a central role in biological processes in both prokaryotes and eukaryotes. For example, the prokaryotic CRISPR-Cas systems provide adaptive immunity for bacteria and archaea against foreign genetic elements. Cas effectors such as Cas9 and Cas12 perform guide-RNA-dependent DNA cleavage1. Although a few eukaryotic RNA-guided systems have been studied, including RNA interference2 and ribosomal RNA modification3, it remains unclear whether eukaryotes have RNA-guided endonucleases. Recently, a new class of prokaryotic RNA-guided systems (termed OMEGA) was reported4,5. The OMEGA effector TnpB is the putative ancestor of Cas12 and has RNA-guided endonuclease activity4,6. TnpB may also be the ancestor of the eukaryotic transposon-encoded Fanzor (Fz) proteins4,7, raising the possibility that eukaryotes are also equipped with CRISPR-Cas or OMEGA-like programmable RNA-guided endonucleases. Here we report the biochemical characterization of Fz, showing that it is an RNA-guided DNA endonuclease. We also show that Fz can be reprogrammed for human genome engineering applications. Finally, we resolve the structure of Spizellomyces punctatus Fz at 2.7 Å using cryogenic electron microscopy, showing the conservation of core regions among Fz, TnpB and Cas12, despite diverse cognate RNA structures. Our results show that Fz is a eukaryotic OMEGA system, demonstrating that RNA-guided endonucleases are present in all three domains of life.


Subject(s)
Chytridiomycota , Endonucleases , Eukaryota , Fungal Proteins , Gene Editing , RNA , Humans , Archaea/genetics , Archaea/immunology , Bacteria/genetics , Bacteria/immunology , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/ultrastructure , CRISPR-Cas Systems , DNA Transposable Elements/genetics , Endonucleases/chemistry , Endonucleases/metabolism , Endonucleases/ultrastructure , Eukaryota/enzymology , Gene Editing/methods , RNA/genetics , RNA/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Cryoelectron Microscopy , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Fungal Proteins/ultrastructure , Evolution, Molecular , Conserved Sequence , Chytridiomycota/enzymology
4.
Proc Natl Acad Sci U S A ; 120(21): e2218308120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37192163

ABSTRACT

Humans coexisted and interbred with other hominins which later became extinct. These archaic hominins are known to us only through fossil records and for two cases, genome sequences. Here, we engineer Neanderthal and Denisovan sequences into thousands of artificial genes to reconstruct the pre-mRNA processing patterns of these extinct populations. Of the 5,169 alleles tested in this massively parallel splicing reporter assay (MaPSy), we report 962 exonic splicing mutations that correspond to differences in exon recognition between extant and extinct hominins. Using MaPSy splicing variants, predicted splicing variants, and splicing quantitative trait loci, we show that splice-disrupting variants experienced greater purifying selection in anatomically modern humans than that in Neanderthals. Adaptively introgressed variants were enriched for moderate-effect splicing variants, consistent with positive selection for alternative spliced alleles following introgression. As particularly compelling examples, we characterized a unique tissue-specific alternative splicing variant at the adaptively introgressed innate immunity gene TLR1, as well as a unique Neanderthal introgressed alternative splicing variant in the gene HSPG2 that encodes perlecan. We further identified potentially pathogenic splicing variants found only in Neanderthals and Denisovans in genes related to sperm maturation and immunity. Finally, we found splicing variants that may contribute to variation among modern humans in total bilirubin, balding, hemoglobin levels, and lung capacity. Our findings provide unique insights into natural selection acting on splicing in human evolution and demonstrate how functional assays can be used to identify candidate causal variants underlying differences in gene regulation and phenotype.


Subject(s)
Hominidae , Neanderthals , Male , Animals , Humans , Neanderthals/genetics , Semen , Hominidae/genetics , Alleles , Gene Expression Regulation , Genome, Human
5.
PLoS Genet ; 18(1): e1009884, 2022 01.
Article in English | MEDLINE | ID: mdl-35051175

ABSTRACT

To determine the contribution of defective splicing in Autism Spectrum Disorders (ASD), the most common neurodevelopmental disorder, a high throughput Massively Parallel Splicing Assay (MaPSY) was employed and identified 42 exonic splicing mutants out of 725 coding de novo variants discovered in the sequencing of ASD families. A redesign of the minigene constructs in MaPSY revealed that upstream exons with strong 5' splice sites increase the magnitude of skipping phenotypes observed in downstream exons. Select hits were validated by RT-PCR and amplicon sequencing in patient cell lines. Exonic splicing mutants were enriched in probands relative to unaffected siblings -especially synonymous variants (7.5% vs 3.5%, respectively). Of the 26 genes disrupted by exonic splicing mutations, 6 were in known ASD genes and 3 were in paralogs of known ASD genes. Of particular interest was a synonymous variant in TNRC6C - an ASD gene paralog with interactions with other ASD genes. Clinical records of 3 ASD patients with TNRC6C variant revealed respiratory issues consistent with phenotypes observed in TNRC6 depleted mice. Overall, this study highlights the need for splicing analysis in determining variant pathogenicity, especially as it relates to ASD.


Subject(s)
Autism Spectrum Disorder/genetics , Mutation , RNA Splicing , Cell Line , Exons , Gene Regulatory Networks , Genetic Predisposition to Disease , Humans , Pedigree , Phenotype , RNA-Binding Proteins , Silent Mutation
6.
PLoS Genet ; 14(3): e1007231, 2018 03.
Article in English | MEDLINE | ID: mdl-29505604

ABSTRACT

Substitutions that disrupt pre-mRNA splicing are a common cause of genetic disease. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations mapping to the canonical 5' and 3' splice sites. However, splicing mutations present in exons and deeper intronic positions are vastly underreported. A recent re-analysis of coding mutations in exon 10 of the Lynch Syndrome gene, MLH1, revealed an extremely high rate (77%) of mutations that lead to defective splicing. This finding is confirmed by extending the sampling to five other exons in the MLH1 gene. Further analysis suggests a more general phenomenon of defective splicing driving Lynch Syndrome. Of the 36 mutations tested, 11 disrupted splicing. Furthermore, analyzing past reports suggest that MLH1 mutations in canonical splice sites also occupy a much higher fraction (36%) of total mutations than expected. When performing a comprehensive analysis of splicing mutations in human disease genes, we found that three main causal genes of Lynch Syndrome, MLH1, MSH2, and PMS2, belonged to a class of 86 disease genes which are enriched for splicing mutations. Other cancer genes were also enriched in the 86 susceptible genes. The enrichment of splicing mutations in hereditary cancers strongly argues for additional priority in interpreting clinical sequencing data in relation to cancer and splicing.


Subject(s)
Mutation , Neoplasms/genetics , RNA Splicing , BRCA1 Protein/genetics , Exons , GTP Phosphohydrolases/genetics , Genetic Predisposition to Disease , Humans , Mismatch Repair Endonuclease PMS2/genetics , MutL Protein Homolog 1/genetics , MutS Homolog 2 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...