Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Hum Gene Ther Clin Dev ; 27(4): 152-159, 2016 12.
Article in English | MEDLINE | ID: mdl-27855487

ABSTRACT

Neuromuscular disorders such as Pompe disease (glycogen storage disease, type II), result in early and potentially irreversible cellular damage with a very limited opportunity for intervention in the newborn period. Pompe disease is due to deficiency in acid α-glucosidase (GAA) leading to lysosomal accumulation of glycogen in all cell types, abnormal myofibrillogenesis, respiratory insufficiency, neurological deficits, and reduced contractile function in striated muscle. Previous studies have shown that fetal delivery of recombinant adeno-associated virus (rAAV) encoding GAA to the peritoneal cavity of Gaa-/- mice resulted in high-level transduction of the diaphragm. While progression of other genetic disorders may occur later in life, the potential of fetal gene delivery to avoid the onset of irreversible damage suggests it is an attractive option for many inherited diseases. In this study, rhesus monkey fetuses were administered 4.5 × 1012 particles of rAAV type 1 expressing human GAA (rAAV1-CMV-hGAA), human α-1-antitrypsin (rAAV1-CBA-hAAT), or human mini-dystrophin (rAAV1-CMV-miniDMD) in the late first trimester using an established intraperitoneal ultrasound-guided approach. Fetuses were monitored sonographically and newborns delivered at term for postnatal studies. All animals remained healthy during the study period (growth, hematology, and clinical chemistry), with no evidence of adverse effects. Tissues were collected at a postnatal age of 3 months (∼7 months post-fetal gene transfer) for immunohistochemistry (IHC) and quantitative PCR. Both the diaphragm and peritoneum from vector-treated animals were strongly positive for expression of human GAA, AAT, or dystrophin by IHC, similar to findings when reporter genes were used. Protein expression in the diaphragm and peritoneum correlated with high vector copy numbers detected by real-time PCR. Other anatomical areas were negative, although the liver showed minimal evidence of human GAA, AAT, and DMD, vector genomes. In summary, delivery of rAAV vectors provided stable transduction of the muscular component of the diaphragm without any evidence of adverse effects.


Subject(s)
Carrier Proteins/genetics , Dependovirus/genetics , Dystrophin/genetics , Genetic Therapy , Genetic Vectors/administration & dosage , Glycogen Storage Disease Type II/therapy , alpha-Glucosidases/genetics , Adolescent , Animals , Child , Child, Preschool , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Diaphragm , Drug Evaluation, Preclinical , Female , Gene Transfer Techniques , Glycogen Storage Disease Type II/genetics , Humans , Macaca mulatta , Male , Mice
2.
Mol Ther Methods Clin Dev ; 2: 15007, 2015.
Article in English | MEDLINE | ID: mdl-26029718

ABSTRACT

Pompe disease is an autosomal recessive genetic disorder characterized by a deficiency of the enzyme responsible for degradation of lysosomal glycogen (acid α-glucosidase (GAA)). Cardiac dysfunction and respiratory muscle weakness are primary features of this disorder. To attenuate the progressive and rapid accumulation of glycogen resulting in cardiorespiratory dysfunction, adult Gaa (-/-) mice were administered a single systemic injection of rAAV2/9-DES-hGAA (AAV9-DES) or bimonthly injections of recombinant human GAA (enzyme replacement therapy (ERT)). Assessment of cardiac function and morphology was measured 1 and 3 months after initiation of treatment while whole-body plethysmography and diaphragmatic contractile function was evaluated at 3 months post-treatment in all groups. Gaa (-/-) animals receiving either AAV9-DES or ERT demonstrated a significant improvement in cardiac function and diaphragmatic contractile function as compared to control animals. AAV9-DES treatment resulted in a significant reduction in cardiac dimension (end diastolic left ventricular mass/gram wet weight; EDMc) at 3 months postinjection. Neither AAV nor ERT therapy altered minute ventilation during quiet breathing (eupnea). However, breathing frequency and expiratory time were significantly improved in AAV9-DES animals. These results indicate systemic delivery of either strategy improves cardiac function but AAV9-DES alone improves respiratory parameters at 3 months post-treatment in a murine model of Pompe disease.

3.
Hum Gene Ther ; 24(11): 928-36, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24164240

ABSTRACT

Metabolic myopathies are a diverse group of rare diseases in which impaired breakdown of stored energy leads to profound muscle dysfunction ranging from exercise intolerance to severe muscle wasting. Metabolic myopathies are largely caused by functional deficiency of a single gene and are generally subcategorized into three major types of metabolic disease: mitochondrial, lipid, or glycogen. Treatment varies greatly depending on the biochemical nature of the disease, and unfortunately no definitive treatments exist for metabolic myopathy. Since this group of diseases is inherited, gene therapy is being explored as an approach to personalized medical treatment. Adeno-associated virus-based vectors in particular have shown to be promising in the treatment of several forms of metabolic myopathy. This review will discuss the most recent advances in gene therapy efforts for the treatment of metabolic myopathies.


Subject(s)
Dependovirus/genetics , Glycogen Storage Disease/therapy , Lipid Metabolism Disorders/therapy , Mitochondrial Myopathies/therapy , Animals , Genetic Therapy , Genetic Vectors , Humans
4.
Mol Ther ; 21(9): 1661-7, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23732990

ABSTRACT

Pompe disease is a neuromuscular disease resulting from deficiency in acid α-glucosidase (GAA), results in cardiac, skeletal muscle, and central nervous system (CNS) pathology. Enzyme replacement therapy (ERT) has been shown to partially correct cardiac and skeletal muscle dysfunction. However, ERT does not cross the blood-brain barrier and progressive CNS pathology ensues. We tested the hypothesis that intrapleural administration of recombinant adeno-associated virus (rAAV9)-GAA driven by a cytomegalovirus (CMV) or desmin (DES) promoter would improve cardiac and respiratory function in Gaa(-/-) mice through a direct effect and retrograde transport to motoneurons. Cardiac magnetic resonance imaging revealed significant improvement in ejection fraction in rAAV9-GAA-treated animals. Inspiratory phrenic and diaphragm activity was examined at baseline and during hypercapnic respiratory challenge. Mice treated with AAV9 had greater relative inspiratory burst amplitude during baseline conditions when compared with Gaa(-/-). In addition, efferent phrenic burst amplitude was significantly correlated with diaphragm activity in both AAV9-DES and AAV9-CMV groups but not in Gaa(-/-). This is the first study to indicate improvements in cardiac, skeletal muscle, and respiratory neural output following rAAV administration in Pompe disease. These results further implicate a role for the CNS in Pompe disease pathology and the critical need to target the neurologic aspects in developing therapeutic strategies.


Subject(s)
Dependovirus/genetics , Glycogen Storage Disease Type II/physiopathology , Glycogen Storage Disease Type II/therapy , Heart/physiology , Phrenic Nerve/physiology , Respiratory Muscles/physiology , alpha-Glucosidases/genetics , Animals , Dependovirus/metabolism , Diaphragm/physiology , Disease Models, Animal , Genetic Vectors , Glycogen Storage Disease Type II/genetics , Humans , Mice , Muscle, Skeletal/pathology , Muscle, Skeletal/physiology , Myocardium/metabolism , Myocardium/pathology , Pleura , Random Allocation , Spinal Cord/metabolism , Transduction, Genetic , alpha-Glucosidases/metabolism
5.
Hum Gene Ther ; 24(6): 630-40, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23570273

ABSTRACT

Pompe disease is an inherited neuromuscular disease caused by deficiency of lysosomal acid alpha-glucosidase (GAA) leading to glycogen accumulation in muscle and motoneurons. Cardiopulmonary failure in infancy leads to early mortality, and GAA enzyme replacement therapy (ERT) results in improved survival, reduction of cardiac hypertrophy, and developmental gains. However, many children have progressive ventilatory insufficiency and need additional support. Preclinical work shows that gene transfer restores phrenic neural activity and corrects ventilatory deficits. Here we present 180-day safety and ventilatory outcomes for five ventilator-dependent children in a phase I/II clinical trial of AAV-mediated GAA gene therapy (rAAV1-hGAA) following intradiaphragmatic delivery. We assessed whether rAAV1-hGAA results in acceptable safety outcomes and detectable functional changes, using general safety measures, immunological studies, and pulmonary functional testing. All subjects required chronic, full-time mechanical ventilation because of respiratory failure that was unresponsive to both ERT and preoperative muscle-conditioning exercises. After receiving a dose of either 1×10(12) vg (n=3) or 5×10(12) vg (n=2) of rAAV1-hGAA, the subjects' unassisted tidal volume was significantly larger (median [interquartile range] 28.8% increase [15.2-35.2], p<0.05). Further, most patients tolerated appreciably longer periods of unassisted breathing (425% increase [103-851], p=0.08). Gene transfer did not improve maximal inspiratory pressure. Expected levels of circulating antibodies and no T-cell-mediated immune responses to the vector (capsids) were observed. One subject demonstrated a slight increase in anti-GAA antibody that was not considered clinically significant. These results indicate that rAAV1-hGAA was safe and may lead to modest improvements in volitional ventilatory performance measures. Evaluation of the next five patients will determine whether earlier intervention can further enhance the functional benefit.


Subject(s)
Dependovirus/metabolism , Genetic Therapy/adverse effects , Glycogen Storage Disease Type II/therapy , Pulmonary Ventilation/physiology , Respiratory Insufficiency/therapy , alpha-Glucosidases/genetics , alpha-Glucosidases/therapeutic use , Adolescent , Antibodies/blood , Child, Preschool , Diaphragm/physiopathology , Female , Genetic Vectors , Glycogen Storage Disease Type II/immunology , Glycogen Storage Disease Type II/physiopathology , Glycogen Storage Disease Type II/surgery , Humans , Immunity, Cellular , Infant , Male , Postoperative Care , Preoperative Care , Resistance Training , Respiratory Insufficiency/blood , Respiratory Insufficiency/immunology , Respiratory Insufficiency/physiopathology , T-Lymphocytes/immunology , Treatment Outcome
6.
Hum Gene Ther ; 23(8): 808-15, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22794786

ABSTRACT

Lysosomal storage diseases are a group of rare inborn errors of metabolism resulting from deficiency in normal lysosomal function. These diseases are characterized by progressive accumulation of storage material within the lysosomes of affected cells, ultimately leading to cellular dysfunction. Multiple tissues ranging from musculoskeletal and visceral to tissues of the central nervous system are typically involved in disease pathology. Since the advent of enzyme replacement therapy (ERT) to manage some LSDs, general clinical outcomes have significantly improved; however, treatment with infused protein is lifelong and continued disease progression is still evident in patients. Viral gene therapy may provide a viable alternative or adjunctive therapy to current management strategies for LSDs. In this review, we discuss the various viral vector systems that have been developed and some of the strategy designs for the treatment of LSDs.


Subject(s)
Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/therapy , Animals , Clinical Trials as Topic , Enzyme Replacement Therapy , Genetic Therapy , Genetic Vectors , Humans
7.
Hum Mol Genet ; 20(R1): R61-8, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21518733

ABSTRACT

Pompe disease is an autosomal recessive metabolic myopathy caused by the deficiency of the lysosomal enzyme acid alpha-glucosidase and results in cellular lysosomal and cytoplasmic glycogen accumulation. A wide spectrum of disease exists from hypotonia and severe cardiac hypertrophy in the first few months of life due to severe mutations to a milder form with the onset of symptoms in adulthood. In either condition, the involvement of several systems leads to progressive weakness and disability. In early-onset severe cases, the natural history is characteristically cardiorespiratory failure and death in the first year of life. Since the advent of enzyme replacement therapy (ERT), the clinical outcomes have improved. However, it has become apparent that a new natural history is being defined in which some patients have substantial improvement following ERT, while others develop chronic disability reminiscent of the late-onset disease. In order to improve on the current clinical outcomes in Pompe patients with diminished clinical response to ERT, we sought to address the cause and potential for the treatment of disease manifestations which are not amenable to ERT. In this review, we will focus on the preclinical studies that are relevant to the development of a gene therapy strategy for Pompe disease, and have led to the first clinical trial of recombinant adeno-associated virus-mediated gene-based therapy for Pompe disease. We will cover the preliminary laboratory studies and rationale for a clinical trial, which is based on the treatment of the high rate of respiratory failure in the early-onset patients receiving ERT.


Subject(s)
Dependovirus/genetics , Genetic Therapy/methods , Glycogen Storage Disease Type II/therapy , Clinical Trials as Topic , Enzyme Replacement Therapy , Genetic Vectors/administration & dosage , Glycogen/metabolism , Glycogen Storage Disease Type II/immunology , Glycogen Storage Disease Type II/pathology , Humans , Treatment Outcome
8.
J Biomed Biotechnol ; 2011: 646257, 2011.
Article in English | MEDLINE | ID: mdl-21318173

ABSTRACT

A canine model of Glycogen storage disease type Ia (GSDIa) is described. Affected dogs are homozygous for a previously described M121I mutation resulting in a deficiency of glucose-6-phosphatase-α. Metabolic, clinicopathologic, pathologic, and clinical manifestations of GSDIa observed in this model are described and compared to those observed in humans. The canine model shows more complete recapitulation of the clinical manifestations seen in humans including "lactic acidosis", larger size, and longer lifespan compared to other animal models. Use of this model in preclinical trials of gene therapy is described and briefly compared to the murine model. Although the canine model offers a number of advantages for evaluating potential therapies for GSDIa, there are also some significant challenges involved in its use. Despite these challenges, the canine model of GSDIa should continue to provide valuable information about the potential for generating curative therapies for GSDIa as well as other genetic hepatic diseases.


Subject(s)
Disease Models, Animal , Dog Diseases/genetics , Dog Diseases/metabolism , Glycogen Storage Disease Type I/genetics , Glycogen Storage Disease Type I/metabolism , Liver Diseases/genetics , Liver Diseases/metabolism , Animals , Clinical Trials as Topic , Dogs , Glycogen Storage Disease Type I/diagnosis , Glycogen Storage Disease Type I/pathology , Glycogen Storage Disease Type I/veterinary , Humans , Liver Diseases/veterinary
9.
Hum Gene Ther ; 22(7): 865-71, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21091282

ABSTRACT

Barth's syndrome (BTHS) is an X-linked mitochondrial disease that is due to a mutation in the Tafazzin (TAZ) gene. Based on sequence homology, TAZ has been characterized as an acyltransferase involved in the metabolism of cardiolipin (CL), a unique phospholipid almost exclusively located in the mitochondrial inner membrane. Yeast, Drosophila, and zebrafish models have been invaluable in elucidating the role of TAZ in BTHS, but until recently a mammalian model to study the disease has been lacking. Based on in vitro evidence of RNA-mediated TAZ depletion, an inducible short hairpin RNA (shRNA)-mediated TAZ knockdown (TAZKD) mouse model has been developed (TaconicArtemis GmbH, Cologne, Germany), and herein we describe the assessment of this mouse line as a model of BTHS. Upon induction of the TAZ-specific shRNA in vivo, transgenic mouse TAZ mRNA levels were reduced by >89% in cardiac and skeletal muscle. TAZ deficiency led to the absence of tetralineoyl-CL and accumulation of monolyso-CL in cardiac muscle. Furthermore, mitochondrial morphology from cardiac and skeletal muscle was altered. Skeletal muscle mitochondria demonstrated disrupted cristae, and cardiac mitochondria were significantly enlarged and displace neighboring myofibrils. Physiological measurements demonstrated a reduction in isometric contractile strength of the soleus and a reduction in cardiac left ventricular ejection fraction of TAZKD mice compared with control animals. Therefore, the inducible TAZ-deficient model exhibits some of the molecular and clinical characteristics of BTHS patients and may ultimately help to improve our understanding of BTHS-related cardioskeletal myopathy as well as serve as an important tool in developing therapeutic strategies for BTHS.


Subject(s)
Barth Syndrome/genetics , Disease Models, Animal , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcription Factors/deficiency , Acyltransferases , Animals , Animals, Genetically Modified , Barth Syndrome/metabolism , Electrocardiography , Female , Gene Knockdown Techniques/methods , Genetic Loci , Genotype , Magnetic Resonance Imaging , Mice , Microscopy, Electron , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Mutation , Myocardium/metabolism , Myocardium/pathology , RNA, Messenger/metabolism
10.
Hum Gene Ther ; 21(7): 903-10, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20163245

ABSTRACT

Glycogen storage disease type Ia (GSDIa; von Gierke disease; MIM 232200) is caused by a deficiency in glucose-6-phosphatase-alpha. Patients with GSDIa are unable to maintain glucose homeostasis and suffer from severe hypoglycemia, hepatomegaly, hyperlipidemia, hyperuricemia, and lactic acidosis. The canine model of GSDIa is naturally occurring and recapitulates almost all aspects of the human form of disease. We investigated the potential of recombinant adeno-associated virus (rAAV) vector-based therapy to treat the canine model of GSDIa. After delivery of a therapeutic rAAV2/8 vector to a 1-day-old GSDIa dog, improvement was noted as early as 2 weeks posttreatment. Correction was transient, however, and by 2 months posttreatment the rAAV2/8-treated dog could no longer sustain normal blood glucose levels after 1 hr of fasting. The same animal was then dosed with a therapeutic rAAV2/1 vector delivered via the portal vein. Two months after rAAV2/1 dosing, both blood glucose and lactate levels were normal at 4 hr postfasting. With more prolonged fasting, the dog still maintained near-normal glucose concentrations, but lactate levels were elevated by 9 hr, indicating that partial correction was achieved. Dietary glucose supplementation was discontinued starting 1 month after rAAV2/1 delivery and the dog continues to thrive with minimal laboratory abnormalities at 23 months of age (18 months after rAAV2/1 treatment). These results demonstrate that delivery of rAAV vectors can mediate significant correction of the GSDIa phenotype and that gene transfer may be a promising alternative therapy for this disease and other genetic diseases of the liver.


Subject(s)
Dependovirus/genetics , Genetic Therapy , Genetic Vectors , Glycogen Storage Disease Type I/therapy , Animals , Disease Models, Animal , Dogs , Genetic Vectors/administration & dosage , Glycogen Storage Disease Type I/genetics , Humans
11.
Mol Ther ; 18(3): 502-10, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20104213

ABSTRACT

Pompe disease is a muscular dystrophy that results in respiratory insufficiency. We characterized the outcomes of targeted delivery of recombinant adeno-associated virus serotype 1 (rAAV2/1) vector to diaphragms of Pompe mice with varying stages of disease progression. We observed significant improvement in diaphragm contractile strength in mice treated at 3 months of age that is sustained at least for 1 year and enhanced contractile strength in mice treated at 9 and 21 months of age, measured 3 months post-treatment. Ventilatory parameters including tidal volume/inspiratory time ratio, minute ventilation/expired CO2 ratio, and peak inspiratory airflow were significantly improved in mice treated at 3 months and tested at 6 months. Despite early improvement, mice treated at 3 months and tested at 1 year had diminished normoxic ventilation, potentially due to attenuation of correction over time or progressive degeneration of nontargeted accessory tissues. However, for all rAAV2/1-treated mice (treated at 3, 9, and 21 months, assayed 3 months later; treated at 3 months, assayed at 1 year), minute ventilation and peak inspiratory flows were significantly improved during respiratory challenge. These results demonstrate that gel-mediated delivery of rAAV2/1 vectors can significantly augment ventilatory function at initial and late phases of disease in a model of muscular dystrophy.


Subject(s)
Dependovirus/genetics , Gene Transfer Techniques , Genetic Therapy/methods , Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/therapy , Muscular Dystrophies/therapy , Respiration , Animals , Carbon Dioxide/chemistry , Disease Progression , Gels , Genetic Vectors , Mice , Mice, Transgenic , Muscle Contraction , Muscular Dystrophies/genetics , Time Factors
12.
Genet Vaccines Ther ; 6: 14, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18854054

ABSTRACT

The purpose of this study was to assess the behavior of pseudotyped recombinant adeno-associated virus type 1 (rAAV2/1) vector genomes in dystrophic skeletal muscle. A comparison was made between a therapeutic vector and a reporter vector by injecting the hindlimb in a mouse model of Limb Girdle Muscular Dystrophy Type 2D (LGMD-2D) prior to disease onset. We hypothesized that the therapeutic vector would establish long-term persistence through prevention of myofiber turnover. In contrast, the reporter vector genome copy number would diminish over time due to disease-associated muscle degradation. One day old alpha sarcoglycan knockout mice (sgca-/-) were injected with 1 x 10(11) vector genomes of rAAV2/1-tMCK-sgca in one hindlimb and the same dose of rAAV2/1-tMCK-LacZ in the contra lateral hindlimb. Newborn mice are tolerant of the foreign transgene allowing for long-term expression of both the marker and the therapeutic gene in the null background. At 2 time-points following vector administration, hindlimb muscles were harvested and analyzed for LacZ or sarcoglycan expression. Our data demonstrate prolonged vector genome persistence in skeletal muscle from the hindlimbs injected with the therapeutic transgene as compared to hindlimbs injected with the reporter gene. We observed loss of vector genomes in skeletal muscles that were there were not protected by the benefits of therapeutic gene transfer. In comparison, the therapeutic vector expressing sarcoglycan led to reduction or elimination of myofiber loss. Mitigating the membrane instability inherent in dystrophic muscle was able to prolong the life of individual myofibers.

13.
Virology ; 381(2): 194-202, 2008 Nov 25.
Article in English | MEDLINE | ID: mdl-18834608

ABSTRACT

We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by approximately 68% and approximately 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy.


Subject(s)
Dependovirus/metabolism , ErbB Receptors/metabolism , Gene Expression Regulation, Viral , Genetic Vectors/metabolism , Transgenes/genetics , Tyrosine/metabolism , Capsid/metabolism , Casein Kinase II/metabolism , Cell Nucleus/metabolism , Dependovirus/genetics , HeLa Cells , Humans , Phosphorylation , Protein Transport , Transduction, Genetic , Ubiquitination
14.
Genet Vaccines Ther ; 6: 13, 2008 Sep 23.
Article in English | MEDLINE | ID: mdl-18811960

ABSTRACT

The AAV9 capsid displays a high natural affinity for the heart following a single intravenous (IV) administration in both newborn and adult mice. It also results in substantial albeit relatively lower expression levels in many other tissues. To increase the overall safety of this gene delivery method we sought to identify which one of a group of promoters is able to confer the highest level of cardiac specific expression and concurrently, which is able to provide a broad biodistribution of expression across both cardiac and skeletal muscle. The in vivo behavior of five different promoters was compared: CMV, desmin (Des), alpha-myosin heavy chain (alpha-MHC), myosin light chain 2 (MLC-2) and cardiac troponin C (cTnC). Following IV administration to newborn mice, LacZ expression was measured by enzyme activity assays. Results showed that rAAV2/9-mediated gene delivery using the alpha-MHC promoter is effective for focal transgene expression in the heart and the Des promoter is highly suitable for achieving gene expression in cardiac and skeletal muscle following systemic vector administration. Importantly, these promoters provide an added layer of control over transgene activity following systemic gene delivery.

15.
Proc Natl Acad Sci U S A ; 105(22): 7827-32, 2008 Jun 03.
Article in English | MEDLINE | ID: mdl-18511559

ABSTRACT

Recombinant adeno-associated virus 2 (AAV2) vectors are in use in several Phase I/II clinical trials, but relatively large vector doses are needed to achieve therapeutic benefits. Large vector doses also trigger an immune response as a significant fraction of the vectors fails to traffic efficiently to the nucleus and is targeted for degradation by the host cell proteasome machinery. We have reported that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects transduction by AAV2 vectors by impairing nuclear transport of the vectors. We have also observed that EGFR-PTK can phosphorylate AAV2 capsids at tyrosine residues. Tyrosine-phosphorylated AAV2 vectors enter cells efficiently but fail to transduce effectively, in part because of ubiquitination of AAV capsids followed by proteasome-mediated degradation. We reasoned that mutations of the surface-exposed tyrosine residues might allow the vectors to evade phosphorylation and subsequent ubiquitination and, thus, prevent proteasome-mediated degradation. Here, we document that site-directed mutagenesis of surface-exposed tyrosine residues leads to production of vectors that transduce HeLa cells approximately 10-fold more efficiently in vitro and murine hepatocytes nearly 30-fold more efficiently in vivo at a log lower vector dose. Therapeutic levels of human Factor IX (F.IX) are also produced at an approximately 10-fold reduced vector dose. The increased transduction efficiency of tyrosine-mutant vectors is due to lack of capsid ubiquitination and improved intracellular trafficking to the nucleus. These studies have led to the development of AAV vectors that are capable of high-efficiency transduction at lower doses, which has important implications in their use in human gene therapy.


Subject(s)
Dependovirus/genetics , Genetic Vectors , Point Mutation , Transduction, Genetic , Tyrosine/genetics , Animals , Capsid/metabolism , Cell Nucleus/metabolism , Genetic Therapy , HeLa Cells , Hepatocytes/metabolism , Humans , Mice , Mice, Inbred C57BL , Phosphorylation , Ubiquitination
16.
Mol Ther ; 15(10): 1775-81, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17653106

ABSTRACT

Limb girdle muscular dystrophy (LGMD) describes a group of inherited diseases resulting from mutations in genes encoding proteins involved in maintaining skeletal muscle membrane stability. LGMD type-2D is caused by mutations in alpha-sarcoglycan (sgca). Here we describe muscle-specific gene delivery of the human sgca gene into dystrophic muscle using an adeno-associated virus 1 (AAV1) capsid and creatine kinase promoter. Delivery of this construct to adult sgca(-/-) mice resulted in localization of the sarcoglycan complex to the sarcolemma and a reduction in muscle fiber damage. Sgca expression prevented disease progression as observed in vivo by T(2)-weighted magnetic resonance imaging (MRI) and confirmed in vitro by decreased Evan's blue dye accumulation. The ability of recombinant AAV-mediated gene delivery to restore normal muscle mechanical properties in sgca(-/-) mice was verified by in vitro force mechanics on isolated extensor digitorum longus (EDL) muscles, with a decrease in passive resistance to stretch as compared with untreated controls. In summary, AAV/AAV-sgca gene transfer provides long-term muscle protection from LGMD and can be non-invasively evaluated using magnetic resonance imaging.


Subject(s)
Genetic Therapy , Muscle, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/prevention & control , Transfection , Animals , Dependovirus/genetics , Genetic Vectors , Magnetic Resonance Imaging , Mice , Mice, Knockout , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/pathology , Sarcoglycans/genetics
17.
Circ Res ; 99(4): e3-9, 2006 Aug 18.
Article in English | MEDLINE | ID: mdl-16873720

ABSTRACT

Heart disease is often the end result of inherited genetic defects, which may potentially be treatable using a gene-transfer approach. Recombinant adeno-associated virus (rAAV)-mediated gene delivery has emerged as a realistic method for the treatment of such disorders. Here, we demonstrate and compare the natural affinity of specific AAV serotype capsids for transduction of cardiac tissue. We compared the previously accepted optimal rAAV serotype for transduction of skeletal muscle, rAAV2/1, with rAAV2/8 and the newer rAAV2/9 vectors carrying the CMV-lacZ construct in their respective abilities to transcend vasculature and transduce myocardium following intravenous delivery of 1x10(11) vector genomes in neonatal mice. We found that both rAAV2/8 and rAAV2/9 are able to transduce myocardium at approximately 20- and 200-fold (respectively) higher levels than rAAV2/1. Biodistribution analysis revealed that rAAV2/9 and rAAV2/8 demonstrate similar behavior in extracardiac tissue. Vector genome quantification showed an increase in genome copy numbers in cardiac tissue for several weeks following administration, which corresponds to expression data. In addition, we intravenously administered 1x10(11) vector genomes of rAAV2/9-CMV-lacZ into adult mice and achieved an expression biodistribution profile similar to that found following delivery to newborns. Although higher doses of virus will be necessary to approach those levels observed following neonatal injections, adult myocardium is also readily transduced by rAAV2/9. Finally, we have demonstrated physiological disease correction by AAV9 gene transfer in a mouse model of Pompe disease via ECG tracings and that intravenous delivery of the same vector preferentially transduces cardiac tissue in nonhuman primates.


Subject(s)
Dependovirus/genetics , Dependovirus/pathogenicity , Heart/virology , Animals , Animals, Newborn , Disease Models, Animal , Electrocardiography , Genes, Reporter , Genetic Vectors , Haplorhini , Mice , Recombination, Genetic , Serotyping , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...