Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ageing Res Rev ; 91: 102046, 2023 11.
Article in English | MEDLINE | ID: mdl-37647995

ABSTRACT

Mild cognitive impairment (MCI) is a well-established prodromal stage of dementia (e.g., Alzheimer's disease) that is often accompanied by early signs of neurodegeneration. To facilitate a better characterization of the underlying pathophysiology, we assessed the available literature to evaluate potential fluid biomarkers in MCI. Peer-reviewed articles that measured cerebrospinal fluid (CSF) and/or peripheral biomarkers of neuronal injury (total-tau [T-tau], neurofilament light chain [NfL], heart-type fatty acid binding protein [HFABP], neuron-specific enolase, ubiquitin C-terminal hydrolase L1) and/or astroglial pathology (glial fibrillary acidic protein [GFAP], S100 calcium-binding protein B) in MCI and healthy controls were assessed. Group differences were summarized by standardized mean differences (SMDs) and 95% confidence intervals calculated using a random-effects model. Heterogeneity was quantified using I2. A total of 107 studies were included in the meta-analysis and 10 studies were qualitatively reviewed. In CSF, concentrations of NfL (SMD = 0.69 [0.56, 0.83]), GFAP (SMD = 0.41 [0.07, 0.75]), and HFABP (SMD = 0.57 [0.26, 0.89]) were elevated in MCI. In blood, increased concentrations of T-tau (SMD = 0.19 [0.09, 0.29]), NfL (SMD = 0.41 [0.32, 0.49]), and GFAP (SMD = 0.39 [0.23, 0.55]) were found in MCI. Heterogeneity that was identified in all comparisons was explored using meta-regression and subgroup analysis. Elevated NfL and GFAP can be detected in both CSF and peripheral blood. Monitoring these biomarkers in clinical settings may provide important insight into underlying neurodegenerative processes in MCI.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Cognitive Dysfunction/diagnosis , tau Proteins , Biomarkers , Neurons , Astrocytes , Amyloid beta-Peptides
2.
Int Psychogeriatr ; 35(11): 664-672, 2023 11.
Article in English | MEDLINE | ID: mdl-37066690

ABSTRACT

BACKGROUND: This paper used data from the Apathy in Dementia Methylphenidate Trial 2 (NCT02346201) to conduct a planned cost consequence analysis to investigate whether treatment of apathy with methylphenidate is economically attractive. METHODS: A total of 167 patients with clinically significant apathy randomized to either methylphenidate or placebo were included. The Resource Utilization in Dementia Lite instrument assessed resource utilization for the past 30 days and the EuroQol five dimension five level questionnaire assessed health utility at baseline, 3 months, and 6 months. Resources were converted to costs using standard sources and reported in 2021 USD. A repeated measures analysis of variance compared change in costs and utility over time between the treatment and placebo groups. A binary logistic regression was used to assess cost predictors. RESULTS: Costs were not significantly different between groups whether the cost of methylphenidate was excluded (F(2,330) = 0.626, ηp2 = 0.004, p = 0.535) or included (F(2,330) = 0.629, ηp2 = 0.004, p = 0.534). Utility improved with methylphenidate treatment as there was a group by time interaction (F(2,330) = 7.525, ηp2 = 0.044, p < 0.001). DISCUSSION: Results from this study indicated that there was no evidence for a difference in resource utilization costs between methylphenidate and placebo treatment. However, utility improved significantly over the 6-month follow-up period. These results can aid in decision-making to improve quality of life in patients with Alzheimer's disease while considering the burden on the healthcare system.


Subject(s)
Alzheimer Disease , Apathy , Central Nervous System Stimulants , Methylphenidate , Humans , Methylphenidate/therapeutic use , Central Nervous System Stimulants/therapeutic use , Quality of Life , Alzheimer Disease/drug therapy
3.
Sci Rep ; 8(1): 12178, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30111814

ABSTRACT

Focused ultrasound (FUS) and circulating microbubbles can induce a targeted and transient increase in blood-brain barrier permeability. While preclinical research has demonstrated the utility of FUS for efficacious drug deliver to the brain, there remain gaps in our knowledge regarding the long-term response of brain vasculature to this intervention. Previous work has demonstrated transcriptional changes in hippocampal microvessels following sonication that are indicative of the initiation of angiogenic processes. Moreover, blood vessel growth has been reported in skeletal muscle following application of FUS and microbubbles. The current study demonstrates that blood vessel density in the rat hippocampus is modestly elevated at 7 and 14 d post-FUS compared to the contralateral hemisphere (7 d: 10.9 ± 6.0%, p = 0.02; 14 d: 12.1 ± 3.2%, p < 0.01), but returns to baseline by 21 d (5.9 ± 2.6%, p = 0.12). Concurrently, relative newborn endothelial cell density and frequency of small blood vessel segments were both elevated in the sonicated hippocampus. While further work is required to determine the mechanisms driving these changes, the findings presented here may have relevance to the optimal frequency of repeated treatments.


Subject(s)
Blood-Brain Barrier/metabolism , Blood-Brain Barrier/radiation effects , Hippocampus/blood supply , Ultrasonic Therapy/methods , Angiogenesis Inducing Agents/metabolism , Animals , Biological Transport , Blood-Brain Barrier/pathology , Capillary Permeability , Cerebrovascular Circulation , Drug Delivery Systems , Hippocampus/metabolism , Hippocampus/radiation effects , Male , Microbubbles/therapeutic use , Neovascularization, Physiologic , Rats , Rats, Sprague-Dawley , Ultrasonic Waves
SELECTION OF CITATIONS
SEARCH DETAIL
...