Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 797
Filter
1.
Neurogenetics ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39066872

ABSTRACT

ATPase, class 1, type 8 A, member 2 (ATP8A2) is a P4-ATPase with a critical role in phospholipid translocation across the plasma membrane. Pathogenic variants in ATP8A2 are known to cause cerebellar ataxia, impaired intellectual development, and disequilibrium syndrome 4 (CAMRQ4) which is often associated with encephalopathy, global developmental delay, and severe motor deficits. Here, we present a family with two siblings born from a consanguineous, first-cousin union from Sudan presenting with global developmental delay, intellectual disability, spasticity, ataxia, nystagmus, and thin corpus callosum. Whole exome sequencing revealed a homozygous missense variant in the nucleotide binding domain of ATP8A2 (p.Leu538Pro) that results in near complete loss of protein expression. This is in line with other missense variants in the same domain leading to protein misfolding and loss of ATPase function. In addition, by performing diffusion-weighted imaging, we identified bilateral hyperintensities in the posterior limbs of the internal capsule suggesting possible microstructural changes in axon tracts that had not been appreciated before and could contribute to the sensorimotor deficits in these individuals.

2.
Sci Rep ; 14(1): 16460, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013989

ABSTRACT

A novel, highly sensitive and eco-friendly micellar-mediated spectrofluorimetric method was developed and validated for the determination of the novel antiparkinsonian drug safinamide mesylate in the presence of its related precursor impurity, 4-hydroxybenzaldehyde. The proposed approach relies on increasing the inherent fluorescence emission at 296 nm of safinamide, by forming hydrogen bonds between the mentioned drug and sodium dodecyl sulfate in the micellar system using 0.1 N HCl as a solvent, following excitation at 226 nm. A thorough investigation was conducted into the experimental factors affecting spectrofluorimetric behavior of the studied drug. A linearity plot of safinamide over the concentration range of 10.0-1000.0 ng/mL against the relative fluorescence intensities was established. The proposed method demonstrated excellent sensitivity down to the nano-gram level with detection and quantitation limits of 1.91 and 5.79 ng/mL, respectively. The studied drug was effectively determined in Parkimedine® Tablets. Furthermore, the proposed method allows for ultrasensitive quantification of safinamide in spiked human plasma, with satisfactory percentage recovery (98.97-102.28%). Additionally, the greenness assessment using the advanced green certificate classification approach, the complementary green analytical procedure index (Complex-GAPI), and the analytical GREEness metric approach (AGREE), along with the practicality check using the Blue Applicability Grade Index in addition to the all-inclusive overall whiteness evaluation using the RGB-12 model were carried out. The outcomes demonstrated the effectiveness and whiteness of the proposed technique. Clearly, the suggested approach has the advantages of being simple, requiring no pretreatment steps, and relying solely on direct measuring procedures.


Subject(s)
Alanine , Antiparkinson Agents , Benzylamines , Micelles , Spectrometry, Fluorescence , Humans , Spectrometry, Fluorescence/methods , Alanine/analogs & derivatives , Alanine/blood , Antiparkinson Agents/blood , Antiparkinson Agents/analysis , Antiparkinson Agents/therapeutic use , Benzylamines/blood , Benzylamines/analysis , Benzylamines/chemistry , Tablets , Limit of Detection , Reproducibility of Results
3.
Sci Rep ; 14(1): 16968, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043806

ABSTRACT

Biopolymers such as chitosan and pectin are currently attracting significant attention because of their unique properties, which are valuable in the food industry and pharmaceutical applications. These properties include non-toxicity, compatibility with biological systems, natural decomposition ability, and structural adaptability. The objective of this study was to assess the performance of two different ratios of pectin-chitosan polyelectrolyte composite (PCPC) after applying them as a coating to commercially pure titanium (CpTi) substrates using electrospraying. The PCPC was studied in ratios of 1:2 and 1:3, while the control group consisted of CpTi substrates without any coating. The pull-off adhesion strength, cytotoxicity, and antibacterial susceptibility tests were utilized to evaluate the PCPC coatings. In order to determine whether the composite coating was the result of physical blending or chemical bonding, the topographic surface parameters were studied using Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). PCPC (1:3) had the highest average cell viability of 93.42, 89.88, and 86.85% after 24, 48, and 72 h, respectively, as determined by the cytotoxicity assay, when compared to the other groups. According to the Kirby-Bauer disk diffusion method for testing antibacterial susceptibility, PCPC (1:3) showed the highest average diameter of the zone of inhibition, measuring 14.88, 14.43, and 11.03 mm after 24, 48, and 72 h of incubation, respectively. This difference was highly significant compared to Group 3 at all three time periods. PCPC (1:3) exhibited a significantly higher mean pull-off adhesion strength (521.6 psi) compared to PCPC (1:2), which revealed 419.5 psi. PCPC (1:3) coated substrates exhibited better surface roughness parameters compared to other groups based on the findings of the AFM. The FTIR measurement indicated that both PCPC groups exhibited a purely physical blending in the composite coating. Based on the extent of these successful in vitro experiments, PCPC (1:3) demonstrates its potential as an effective coating layer. Therefore, the findings of this study pave the way for using newly developed PCPC after electrospraying coating on CpTi for dental implants.


Subject(s)
Anti-Bacterial Agents , Chitosan , Dental Implants , Pectins , Polyelectrolytes , Chitosan/chemistry , Chitosan/pharmacology , Pectins/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyelectrolytes/chemistry , Microbial Sensitivity Tests , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Spectroscopy, Fourier Transform Infrared , Animals , Titanium/chemistry , Titanium/pharmacology , Materials Testing , Cell Survival/drug effects , Humans , Microscopy, Atomic Force , Surface Properties , Mice
4.
Environ Res ; 260: 119567, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39029728

ABSTRACT

The study was conducted to determine the chemical and structural properties of polysaccharides extracted from the marine macroalgae Nemalion cari-cariense. Furthermore, evaluate the anticancer and free radical scavenging activity of purified N. cari-cariense polysaccharide. Approximately 41.6% (w/w) of crude polysaccharide was extracted from N. cari-cariense macroalgae biomass. After deproteinization, the purified polysaccharide's major chemical composition was found to be 92.6%, with all protein content removed. The purified polysaccharide had ash and moisture % of 23.01% and 4.03%, respectively. The C, H, and N of the test polysaccharide were analyzed using GC-MS, with results of 39.21%, 5.87%, and 4.29%, respectively. Furthermore, this analysis also revealed the monosaccharide composition such as glucose, galactose, mannose, xylose, and rhamnose glucose, galactose, mannose, xylose, and rhamnose 54.62%, 29.64%, 2.8%, 5.9%, and 6.8% respectively. The molecular weight of purified polysaccharide was found as 49 kDa through PAGE analysis. The FT-IR analysis revealed that the presence of functional groups exactly attributed to polysaccharide and 1H and 13C-NMR analyses confirmed the structural properties of N. cari-cariense polysaccharide. The free radicals scavenging ability of purified N. cari-cariense polysaccharide was investigated by various assays such as total antioxidant assay (22.3%-72.5% at 50-250 µg mL-1), DPPH assay (23.6%-76.9% at 10-160 µg mL-1), OH radical scavenging assay (13.6%-70.2% at 50-250 µg mL-1 dosage, and SO radical scavenging assay (27.6-68.41% at 50-250 µg mL-1 concentration). The polysaccharide demonstrated 82.63% anticancer activity towards the A549 lung cancer cell line at 1000 µg mL-1 dosage. The findings suggest that this polysaccharide has biological applications.

5.
J Immunoassay Immunochem ; : 1-20, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39051937

ABSTRACT

BACKGROUND AND OBJECTIVES: The type I interferon (IFN) signature has been found to be overactivated in many systemic autoimmune diseases. This may be explained by impaired regulation of interferon-stimulated genes (ISGs) as well as interferon-induced protein 44 (IFI44) expression via their regulatory mechanisms via interferon regulatory factors (IRFs). PATIENTS AND METHODS: This case-control study includes two groups: 50 RA patients and 50 healthy controls. The quantification of IFI44 and IRF4 expression levels by the real-time PCR technique was estimated. Disease Activity Score-28 (DAS-28) was estimated for RA patients only. RESULTS: Among the RA patients, there were statistically significant increased ESR, CRP, TLC, RF, and anti-CCP levels (p value < 0.001) and significant increased expression of the IFI44 and IRF4 genes (p value < 0.001). There was a significant positive correlation between the IFI44 and IRF4, and there was a significant correlation between both and ESR and anti-CCP among RA patients. At a cutoff point of 1.95, IFI44 shows higher sensitivity and specificity values than IRF4 for the diagnosis of RA. CONCLUSION: IFI44 was more sensitive for RA diagnosis than IRF4. IFI44 and IRF4 overexpression could be promising predictors of RA diagnosis and might become useful clinical tools to guide therapeutic strategies.

6.
Environ Res ; 260: 119585, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39029730

ABSTRACT

In this study, the phytochemical profile and silver nanoparticle (AgNPs)-synthesizing ability of Pittosporum undulatum methanol extract were investigated. Furthermore, biological applications of the AgNPs, such as antibacterial effect (against Klebsiella pneumoniae, Staphylococcus aureus, Bacillus subtilis, and Escherichia coli), mosquito larvicidal effect (against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti), and cytotoxicity (against fibroblast cell line L929) were evaluated using in vitro experiments. The phytochemical analysis revealed that the methanol extract contained cardiac glycosides, terpenoids, saponins, alkaloids, flavonoids, glycosides, coumarins, phenolics, and tannins. Furthermore, standard characterization techniques such as UV-Vis spectrometry, SEM, TEM, FTIR, and XRD confirmed that the methanol extract of P. undulatum effectively synthesized the AgNPs. The synthesized AgNPs had a spherical shape and size of 20-200 nm. The bactericidal analysis revealed that the AgNPs have dose-dependent antibacterial activity. The MTT assay showed that the AgNPs were bio-compatible up to a dosage of 250 µg mL-1 in the normal fibroblast cell line L929. Furthermore, the LC50 values for AgNPs against larvae of An. stephensi, Cx. quinquefasciatus, and Ae. aegypti were 0.4, 4.7, and 1.2 ppm, respectively. Field trials demonstrated that the larvicidal effect was enhanced within 24-72 h, and the rate of reduction increased over time. Thus, our findings provide an ideal sustainable AgNP bio-pesticide to combat filarial, dengue, and malaria vectors.

7.
Mol Biol Rep ; 51(1): 847, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046539

ABSTRACT

BACKGROUND: Psoriasis (Ps) is a disorder attributed to the immune system that involves inflammation of the skin and joints. Psoriasis is a multifactorial disorder in which genetic factors represent about 70% of the disease risk. This study aims to establish the correlation between the ERAP2 gene's single nucleotide polymorphisms (SNPs) rs2910686 and rs2248374 with the susceptibility to Ps and/or psoriatic arthritis (PsA) among the Egyptian population. METHODS AND RESULTS: Genotyping of ERAP2 gene SNPs (rs2910686 and rs2248374) in 120 psoriatic patients with and without arthritis and 100 controls was done using real-time PCR. The genotype frequency and distribution of the ERAP2 SNP (rs2910686 and rs2248374) were in Hardy-Weinberg equilibrium (HWE). For rs2910686, the TC and CC genotypes and C allele frequency were significant risk factors for PsA compared to the controls (OR = 5.708, OR = 10.165, and OR = 4.282, respectively). They also were significant risk factors for Ps compared to the controls (OR = 5.165, OR = 5.040, and OR = 3.258, respectively). For rs2248374, the AG genotype significantly increased the risk of PsA (OR = 2.605) and Ps (OR = 3.768) compared to controls. The AG genotype was significantly related to the risk of Ps (OR = 3.369) G allele with PsA (OR = 1.608) and Ps (OR = 1.965) compared to controls. CONCLUSION: In Egyptian individuals, the ERAP2 gene polymorphisms (rs2248374 and rs2910686) may contribute genetically to the pathophysiology of psoriasis and PsA.


Subject(s)
Aminopeptidases , Arthritis, Psoriatic , Gene Frequency , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Psoriasis , Humans , Polymorphism, Single Nucleotide/genetics , Aminopeptidases/genetics , Arthritis, Psoriatic/genetics , Egypt , Male , Female , Psoriasis/genetics , Gene Frequency/genetics , Adult , Middle Aged , Case-Control Studies , Genotype , Risk Factors , Alleles , Genetic Association Studies , North African People
8.
Ann Clin Microbiol Antimicrob ; 23(1): 53, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886796

ABSTRACT

BACKGROUND: The global dissemination of critical-priority carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) via food sources represents a significant public health concern. Epidemiological data on CR-hvKp in oysters in Egypt is limited. This study aimed to investigate the potential role of oysters sold in Egypt as a source for carbapenem-resistant K. pneumoniae (CRKP), hypervirulent K. pneumoniae (hvKp), and CR-hvKp and assess associated zoonotic risks. METHODS: A sample of 330 fresh oysters was randomly purchased from various retail fish markets in Egypt and divided into 33 pools. Bacteriological examination and the identification of Klebsiella pneumoniae were performed. Carbapenem resistance in K. pneumoniae isolates was determined by phenotypic and molecular methods. Additionally, the presence of hypervirulent K. pneumoniae was identified based on virulence gene markers (peg-344, rmpA, rmpA2, iucA, and iroB), followed by a string test. The clustering of CR-hvKp strains was carried out using R with the pheatmap package. RESULTS: The overall prevalence of K. pneumoniae was 48.5% (16 out of 33), with 13 isolates displaying carbapenem resistance, one intermediate resistance, and two sensitive. Both carbapenem-resistant K. pneumoniae and carbapenem-intermediate-resistant K. pneumoniae strains exhibited carbapenemase production, predominantly linked to the blaVIM gene (68.8%). HvKp strains were identified at a rate of 62.5% (10/16); notably, peg-344 was the most prevalent gene. Significantly, 10 of the 13 CRKP isolates possessed hypervirulence genes, contributing to the emergence of CR-hvKp. Moreover, cluster analysis revealed the clustering of two CR-hvKp isolates from the same retail fish market. CONCLUSION: This study provides the first insight into the emergence of CR-hvKp among oysters in Egypt. It underscores the potential role of oysters as a source for disseminating CR-hvKp within aquatic ecosystems, presenting a possible threat to public health.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Ostreidae , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/pathogenicity , Klebsiella pneumoniae/isolation & purification , Animals , Egypt/epidemiology , Carbapenems/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Ostreidae/microbiology , Anti-Bacterial Agents/pharmacology , Humans , Virulence , Public Health , Virulence Factors/genetics , Prevalence , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/pathogenicity
9.
Brain Sci ; 14(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38928574

ABSTRACT

Tobacco and alcohol have been identified as health risk behaviors associated with significant unfavorable health consequences, ranking within the list of the top ten causes of mortality and disability-adjusted life years (DALY). The combustion of tobacco leads to the formation of acrylamide (ACR), which is well known for its neurotoxic effects. Similarly, alcohol consumption has also been widely recognized for its neurotoxic effects. Both substances can affect neurons and neuroglia cells through various pathways. This study sought to examine the impacts of co-administration of ACR and intermittent-access ethanol (IAE) consumption over a period of one month. The experimental group received 20 mg/kg of ACR, administered orally, along with IAE of 20% ethanol sessions lasting 24 h, three times per week. The cognitive outcomes were assessed utilizing the elevated plus maze (EPM), which was employed as a means of assessing the capability to learn and remember, the novel object recognition (NOR) test, which was employed to assess recognition memory, and the Y-maze, which was used to explore a new environment and navigate. Additionally, ELISA assays were performed to examine underlying mechanisms, including markers associated with inflammation (NF-κB, PGE2, and TNF-α), apoptosis (Bcl2, Bax, and Caspase-3), and oxidative stress (MDA, catalase, and GSH). These markers were assessed in the brain homogenate as part of the investigation. Furthermore, a histopathological study was conducted. The findings indicated that NF-κB levels increased significantly in the combination of ACR and IAE groups (ACR + IAE) compared to either the ACR-alone or IAE-alone groups. However, parallel changes were observed in TNF-α, PGE2, Bax, Bcl-2, Caspase-3, GSH, and CAT levels when comparing the ACR + IAE group to the ACR-alone group. Comparable alterations were noted between the ACR + IAE treatment and IAE-alone groups in TNF-α, Bcl-2, MDA, GSH, and CAT levels. Moreover, the histopathological analysis revealed significant changes between the ACR + IAE and the ACR- or IAE-alone groups. Regarding memory parameters assessed using tests including EPM, NOR, and Y-maze, considerable changes were observed across all treatment groups as opposed to the control. Surprisingly, there were no notable differences in the NOR and Y-maze tasks between the alone and combination treatment. Further study is necessary to explore the long-term alteration of co-administering ACR and IAE on behavior, memory, and neurotoxicity-related mechanisms, in order to elucidate their combined effects more clearly.

11.
Des Monomers Polym ; 27(1): 35-50, 2024.
Article in English | MEDLINE | ID: mdl-38903406

ABSTRACT

The C3-symmetry ionic polymer PPyTri has been designed with multi-walled carbon nanotubes (MWCNTs) or graphene nanoplatelets (GNPs) and studied as an ultrasensitive electrochemical sensor for trace Hg(II) detection. The synthesis approach incorporated attaching three pyridinium cationic components with chloride anions to the triazine core. The precursors, BPy, were synthesized using a condensation process involving 4-pyridine carboxaldehyde and focused nicotinic hydrazide. The polymer PPyTri was further modified with either MWCNTs or GNPs. The resulting ionic polymer PPyTri and its fabricated nanocomposites were characterized using infrared (IR), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and powder X-ray diffraction (XRD). The analysis revealed that both the polymer and its nanocomposites have semi-crystalline structures. The electroactivity of the designed nanocomposites toward Hg + 2 ions revealed that among the nanocomposites and bare copolymer, the glassy carbon electrode (GCE) adapted with the PPyTri GNPs-5% exhibited the greatest current response over a wide range of Hg + 2 concentrations. The nanocomposite-modified electrode presented an excellent sensitivity of 83.33 µAµM - 1 cm - 2, a low detection limit of 0.033 nM, and a linear dynamic range of 0.1 nM to 0.01 mM (R2 = 0.9945).

12.
Neuromuscul Disord ; 41: 8-19, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38865917

ABSTRACT

We investigated the comorbidities, associated factors, and the relationship between anthropometric measures and respiratory function and functional abilities in adults with Duchenne muscular dystrophy (DMD). This was a single-centre cross-sectional study in genetically diagnosed adults with DMD (>16 years old). Univariate and multivariate analyses identified factors associated with dysphagia, constipation, Body Mass Index (BMI), and weight. Regression analysis explored associations between BMI, weight, and respiratory/motor abilities. We included 112 individuals (23.4 ± 5.2 years old), glucocorticoid-treated 66.1 %. The comorbidities frequency was 61.6 % scoliosis (61.0 % of them had spinal surgery), 36.6 % dysphagia, 36.6 % constipation, and 27.8 % urinary conditions. The use of glucocorticoids delayed the time to spinal surgery. The univariate analysis revealed associations between dysphagia and constipation with age, lack of glucocorticoid treatment, and lower respiratory and motor function. In the multivariate analysis, impaired cough ability remained as the factor consistently linked to both conditions. Constipation associated with lower BMI and weight. BMI and weight positively correlated with respiratory parameters, but they did not associate with functional abilities. Glucocorticoids reduce the frequency of comorbidities in adults with DMD. The ability to cough can help identifying dysphagia and constipation. Lower BMI and weight in individuals with DMD with compromised respiratory function may suggest a higher calories requirement.


Subject(s)
Body Mass Index , Comorbidity , Constipation , Deglutition Disorders , Glucocorticoids , Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/complications , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/physiopathology , Muscular Dystrophy, Duchenne/epidemiology , Male , Cross-Sectional Studies , Adult , Young Adult , Glucocorticoids/therapeutic use , Adolescent , Deglutition Disorders/epidemiology , Deglutition Disorders/etiology , Deglutition Disorders/physiopathology , Constipation/epidemiology , Female , Anthropometry , Body Weight
13.
Cureus ; 16(4): e58858, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38800263

ABSTRACT

Background Sleep disorders are prevalent worldwide and can have a negative impact on physical and psychological well-being. Numerous studies have explored the reciprocal connection between obesity and sleep disorders. This study aimed to compare the prevalence of sleep disorders among underweight, normal, overweight, and obese adults in Riyadh, Saudi Arabia. Methods This cross-sectional study was conducted on 378 adults visiting primary healthcare centers in Riyadh, Saudi Arabia, from August to November 2022. Data were collected using a self-administered questionnaire that included a section for demographic data and the SLEEP-50 questionnaire in both English and Arabic languages. Results Most of the participants were aged between 25 and 34 years (37.6%), 79.1% were females and 59.5% were either overweight or obese. Most participants (78.3%) had at least one sleep disorder, with narcolepsy being the most frequent disorder (65.1%), and 23% had two combined sleep disorders. Obese and overweight patients were significantly more likely to have sleep disorders (p=0.011), and obese patients were more likely to have all sleep disorders (p=0.049). Conclusion The prevalence of sleep disorders, namely narcolepsy and insomnia, is high among adults in Riyadh, Saudi Arabia. Moreover, sleep disorders are significantly associated with obesity. Evaluation and management of sleep disorders in clinical settings among patient with overweight or obese is important to improve their quality of life and to prevent physical and psychological complications.

14.
Cureus ; 16(4): e57722, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38711695

ABSTRACT

Urticarial vasculitis (UV) is a type of small-vessel vasculitis, which is rarely associated with anti-tumor necrosis factor (TNF)-alpha medication. We describe a 72-year-old woman with multiple comorbidities on several medications, including an adalimumab biosimilar for Hurley stage II recalcitrant hidradenitis suppurativa (HS), who presented with new-onset severe angioedema and a rash with urticarial wheals that covered most of her body surface area. The diagnosis of drug-induced UV is supported by both the history of adalimumab biosimilar use and the histopathology result. The patient responded successfully to a course of doxycycline administered for three months, which was preceded by corticosteroid dosages, both orally and intravenously, to reduce inflammation. The given case highlights the correlation between a distinct dermatologic autoimmune manifestation and TNF-targeted therapy, demonstrating the importance for dermatologists to be aware of the potential side effects of adalimumab biosimilars in order to manage them effectively.

15.
Poult Sci ; 103(7): 103793, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729072

ABSTRACT

The meat of the quail is one of the most delicious types, as it is rich in minerals and vitamins, especially vitamin K, which is useful in treating nervous diseases. In the present investigation, based on their live body weight, 270 genetically-enhanced white quail chicks of mixed sex were randomly assigned to 3 groups, each with 90 chicks. The first group's birds were slaughtered at 28 d of age. The birds in the second group were slaughtered at 31 d, and the birds in the third group were slaughtered at 34 d. Results showed no significant difference between the various groups in the overall mortality rate index at the end of each fattening stage (P > 0.05). There were substantial variations (P ≤ 0.05) in the average live weight index between the first and both groups at each group's marketing age. With increasing marketing age, body weight increases. Quail chicks raised for 34 d received the lowest EPEF (28.90 points), followed by those raised for 31 d and 28 d, which received 33.37 and 37.32 points, respectively. The economic feasibility of the 3 groups, no significant differences in the profit index were observed at the age of 28 d. Compared to the marketing age of the other 2 groups, it was noted that the profit index decreased as the birds advanced in age. Delaying marketing to 31 d leads to a decrease in profit by 5.7%, and delaying marketing to 34 d reduces the profit index to 26.36% compared to marketing at 28 d. For blood hematology parameters, a significant increase in the studied indicators with the age of the birds was observed through the study of blood indicators. Still, it did not reach the significance level. It could be concluded that 28 d is the ideal marketing age for the enhanced white quails, as it yielded the highest economic return and the best performance.


Subject(s)
Coturnix , Meat , Animals , Coturnix/growth & development , Coturnix/physiology , Coturnix/genetics , Male , Female , Meat/analysis , Animals, Genetically Modified , Random Allocation , Age Factors
16.
J Infect Public Health ; 17(7): 102452, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820895

ABSTRACT

BACKGROUND: Amidst the persistent global health threat posed by the evolving SARS-CoV-2 virus throughout the four-year-long COVID-19 pandemic, the focus has now turned to the Omicron variant and its subvariant, JN.1, which has rapidly disseminated worldwide. This study reports on the characteristics and clinical manifestations of patients during the surge of the JN.1 variant in Saudi Arabia; it also investigates the evolution of SARS-CoV-2 variants in organ transplant patients and identifies patient risk factors. METHODS: A total of 151 nasopharyngeal samples from patients with PCR-confirmed SARS-CoV-2 infection were collected between September 2023 and January 2024. Demographic and clinical data of the patients were obtained from electronic health records. All confirmed positive samples underwent sequencing using Ion GeneStudio and the Ion AmpliSeq™ SARS-CoV-2 panel. RESULTS: During the surge of the JN.1 variant, the average age of the patients was 40 years, ranging from 3 to 93 years, and nearly 50% of the patients were male. Our investigation revealed that the J.N variant predominantly infected patients with comorbidities or organ transplant recipients (57.6%). Moreover, patients with comorbidities or organ transplants exhibited a higher number of mutations. In our organ transplant cohort, an increased total number of spike mutations was associated with a lower risk of developing severe disease (OR = 0.96, 95% CI: 0.93-0.98). CONCLUSIONS: Although JN.1 may not prove to be particularly harmful, it is crucial to recognize the persistent emergence of concerning variants, which create new pathways for the virus to evolve. The ongoing evolution of SARS-CoV-2 is evident in the continuous divergence of these variants from the original strain that marked the onset of the pandemic nearly four years ago.


Subject(s)
COVID-19 , Organ Transplantation , SARS-CoV-2 , Transplant Recipients , Humans , Saudi Arabia/epidemiology , COVID-19/epidemiology , Male , Female , Middle Aged , Adult , Aged , SARS-CoV-2/genetics , Adolescent , Young Adult , Child , Child, Preschool , Aged, 80 and over , Transplant Recipients/statistics & numerical data , Organ Transplantation/adverse effects , Risk Factors
18.
Int Immunopharmacol ; 135: 112308, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38788447

ABSTRACT

Although colistin has a crucial antibacterial activity in treating multidrug-resistant gram-negative bacteria strains; it exhibited renal and neuronal toxicities rendering its use a challenge. Previous studies investigated the incretin hormones either glucose-dependent insulinotropic polypeptide (GIP) or glucagonlike peptide-1 (GLP-1) for their neuroprotective and nephroprotective effectiveness. The present study focused on investigating Tirzepatide (Tirze), a dual GLP-1/GIP agonist, as an adjuvant therapy in the colistin treatment protocol for attenuating its renal and neuronal complications. Rats were divided into; The normal control group, the colistin-treated group received colistin (300,000 IU/kg/day for 7 days; i.p.). The Tirze-treated group received Tirze (1.35 mg/kg on the 1,4,7thdays; s.c.) and daily colistin. Tirze effectively enhanced histopathological alterations, renal function parameters, and locomotor activity in rats. Tirze mechanistically acted via modulating various signaling axes evolved under the insult of phosphatidylinositol 3-kinases (PI3K)/phosphorylated protein kinase-B (p-Akt)/ glycogen synthase kinase (GSK)3-ß hub causing mitigation of nuclear factor (NF)-κB (NF-κB) / tumor necrosis factor-α (TNF-α), increment of nuclear factor erythroid 2-related factor 2 (Nrf2)/ glutathione (GSH), downregulation of ER stress-related biomarkers (activation transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP)), antiapoptotic effects coupling with reduction of glial fibrillary acidic protein (GFAP) immunoreactivity and enhancement of phosphorylated c-AMP response element-binding (p-CREB) / brain-derived neurotrophic factor (BDNF)/tyrosine kinase B (TrkB) neuroprotective pathway. Briefly, Tirze exerts a promising role as adjuvant therapy in the colistin treatment protocol for protection against colistin's nephro- and neurotoxicity according to its anti-inflammatory, antioxidant, and antiapoptotic impacts besides its ability to suppress ER stress-related biomarkers.


Subject(s)
Brain-Derived Neurotrophic Factor , Colistin , Cyclic AMP Response Element-Binding Protein , Endoplasmic Reticulum Stress , Glycogen Synthase Kinase 3 beta , Kidney , Oxidative Stress , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Oxidative Stress/drug effects , Endoplasmic Reticulum Stress/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats , Brain-Derived Neurotrophic Factor/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Male , Signal Transduction/drug effects , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptor, trkB/metabolism , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Rats, Wistar , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/adverse effects , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/prevention & control , Neurotoxicity Syndromes/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Kidney Diseases/prevention & control , Kidney Diseases/metabolism
19.
ACS Appl Bio Mater ; 7(6): 3865-3876, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38780243

ABSTRACT

The study presents a first electrochemical method for the determination of the immunomodulator drug Baricitinib (BARI), crucial in managing COVID-19 patients requiring oxygen support. A unique electrode was developed by modifying graphite carbon nickel nanoparticles (NiNPs) with functionalized multiwalled carbon nanotubes (f.MWCNTs), resulting in nanohybrids tailored for highly sensitive BARI detection. Comparative analysis revealed the superior electrocatalytic performance of the nanohybrid-modified electrode over unmodified counterparts and other modifications, attributed to synergistic interactions between f.MWCNTs and nickel nanoparticles. Under optimized conditions, the sensors exhibited linear detection within a concentration range from 4.00 × 10-8 to 5.56 × 10-5 M, with a remarkably low detection limit of 9.65 × 10-9 M. Notably, the modified electrode displayed minimal interference from common substances and demonstrated high precision in detecting BARI in plasma and medicinal formulations, underscoring its clinical relevance and potential impact on COVID-19 treatment strategies.


Subject(s)
Azetidines , COVID-19 , Electrochemical Techniques , Nanotubes, Carbon , Nickel , Purines , Pyrazoles , SARS-CoV-2 , Sulfonamides , Nanotubes, Carbon/chemistry , Sulfonamides/chemistry , Nickel/chemistry , Pyrazoles/chemistry , Humans , Purines/chemistry , Azetidines/chemistry , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , COVID-19 Drug Treatment , Materials Testing , Immunologic Factors/chemistry , Immunologic Factors/therapeutic use , Particle Size , Catalysis , Biocompatible Materials/chemistry , Limit of Detection
20.
medRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798571

ABSTRACT

ATPase, class 1, type 8A, member 2 (ATP8A2) is a P4-ATPase with a critical role in phospholipid translocation across the plasma membrane. Pathogenic variants in ATP8A2 are known to cause cerebellar ataxia, mental retardation, and disequilibrium syndrome 4 (CAMRQ4) which is often associated with encephalopathy, global developmental delay, and severe motor deficits. Here, we present a family with two siblings presenting with global developmental delay, intellectual disability, spasticity, ataxia, nystagmus, and thin corpus callosum. Whole exome sequencing revealed a homozygous missense variant in the nucleotide binding domain of ATP8A2 (p.Leu538Pro) that results in near complete loss of protein expression. This is in line with other missense variants in the same domain leading to protein misfolding and loss of ATPase function. In addition, by performing diffusion-weighted imaging, we identified bilateral hyperintensities in the posterior limbs of the internal capsule suggesting possible microstructural changes in axon tracts that had not been appreciated before and could contribute to the sensorimotor deficits in these individuals.

SELECTION OF CITATIONS
SEARCH DETAIL
...