Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorganica Chim Acta ; 486: 782-792, 2019 Feb 24.
Article in English | MEDLINE | ID: mdl-31485082

ABSTRACT

Cu(III)2(µ-O)2 bis-oxides (O) form spontaneously by direct oxygenation of nitrogen-chelated Cu(I) species and constitute a diverse class of versatile 2e-/2H+ oxidants, but while these species have attracted attention as biomimetic models for dinuclear Cu enzymes, reactivity is typically limited to intramolecular ligand oxidation, and systems exhibiting synthetically useful reactivity with exogenous substrates are limited. O tmpd (TMPD = N 1 , N 1 , N 3 , N 3 -tetramethylpropane-1,3-diamine) presents an exception, readily oxidizing a diverse array of exogenous substrates, including primary alcohols and amines selectively over their secondary counterparts in good yields. Mechanistic and DFT analyses suggest substrate oxidation proceeds through initial axial coordination, followed by rate limiting rotation to position the substrate in the Cu(III) equatorial plane, whereupon rapid deprotonation and oxidation by net hydride transfer occurs. Together, the results suggest the selectivity and broad substrate scope unique to O tmpd are best attributed to the combination of ligand flexibility, limited steric demands, and ligand oxidative stability. In keeping with the absence of rate limiting C-H scission, O tmpd exhibits a marked insensitivity to the strength of the substrate Cα-H bond, readily oxidizing benzyl alcohol and 1 octanol at near identical rates.

2.
Inorg Chem ; 44(21): 7345-64, 2005 Oct 17.
Article in English | MEDLINE | ID: mdl-16212361

ABSTRACT

We have synthesized and characterized bis(mu-oxo)dicopper(III) dimers 1b-4b (Os) based on a core family of peralkylated trans-(1R,2R)-cyclohexanediamine (CD) ligands, self-assembled from the corresponding [LCu(MeCN)]CF3SO3 species 1a-4a and O2 at 193 K in aprotic media; additional Os based on peralkylated ethylenediamine and tridentate polyazacyclononane ligands were synthesized analogously for comparative purposes (5b-7b and 8b-9b, respectively). Trigonal-planar [LCu(MeCN)]1+ species are proposed as the active O precursors. The 3-coordinate Cu(I) complexes [(L(TE))Cu(MeCN)]CF3SO3 (4a) and [(L(TB))Cu(MeCN)]CF3SO3 (10a) were structurally characterized; the apparent O2-inertness of 10a correlates with the steric demands of its four benzyl substituents. The rate of O formation, a multistep process that likely proceeds via associative formation of a 1:1 [LCu(O2)]1+ intermediate, exhibits significant dependence upon ligand sterics and solvent: oxygenation of 4a-the slowest-reacting O precursor of the CD series-is first-order with respect to [4a] and proceeds at least 300 times faster in tetrahydrofuran than in CH2Cl2. The EPR, UV-vis, and resonance Raman spectra of 1b-9b are all characteristic of the diamagnetic bis(mu-oxo)dicopper(III) core. The intense ligand-to-metal charge transfer absorption maxima of CD-based Os are red-shifted proportionally with increasing peripheral ligand bulk, an effect ascribed to a slight distortion of the [Cu2O2] rhomb. The well-ordered crystal structure of [(L(ME))2Cu2(mu-O)2](CF3SO3)2.4CH2Cl2 ([3b. 4CH2Cl2]) features the most metrically compact [Cu2O2]2+ core among structurally characterized Os (av Cu-O 1.802(7) A; Cu...Cu 2.744(1) A) and exemplifies the minimal square-planar ligation environment necessary for stabilization of Cu(III). The reported Os are mild oxidants with moderate reactivity toward coordinating substrates, readily oxidizing thiols, certain activated alkoxides, and electron-rich phenols in a net 2e-, 2H+ process. In the absence of substrates, 1b-9b undergo thermally induced autolysis with concomitant degradation of the polyamine ligands. Ligand product distribution and primary kinetic isotope effects (kobsH/kobsD approximately 8, 1b/d24-1b, 293 K) support a unimolecular mechanism involving rate-determining C-H bond cleavage at accessible ligand N-alkyl substituents. Decomposition half-lives span almost 3 orders of magnitude at 293 K, ranging from approximately 2 s for 4b to almost 30 min for d(24)-1b, the most thermally robust dicationic O yet reported. Dealkylation is highly selective where ligand rigidity constrains accessibility; in 3b, the ethyl groups are attacked preferentially. The observed relative thermal stabilities and dealkylation selectivities of 1b-9b are correlated with NC(alpha)-H bond dissociation energies, statistical factors, ligand backbone rigidity, and ligand denticity/axial donor strength. Among the peralkylated amines surveyed, bidentate ligands with oxidatively robust NC(alpha)-H bonds provide optimal stabilization for Os. Fortuitously, the least sterically demanding N-alkyl substituent (methyl) gives rise to the most thermally stable and most physically accessible O core, retaining the potential for exogenous substrate reactivity.


Subject(s)
Copper/chemistry , Diamines/chemistry , Alkylation , Drug Stability , Ligands , Models, Molecular , Molecular Conformation
3.
Org Lett ; 6(3): 373-6, 2004 Feb 05.
Article in English | MEDLINE | ID: mdl-14748596

ABSTRACT

[reaction: see text] Catalytic carbonylation of epoxides to beta-lactones was effected by a highly active and selective bimetallic catalyst comprised of a chromium(III) porphyrin cation and a cobalt tetracarbonyl anion. The complex is readily synthesized from commercially available compounds in high yield. Carbonylation of numerous linear epoxides, as well as bicyclic epoxides derived from 8- and 12-membered hydrocarbons, proceeded with high activity, selectivity, and yield.

5.
J Am Chem Soc ; 124(7): 1174-5, 2002 Feb 20.
Article in English | MEDLINE | ID: mdl-11841278

ABSTRACT

A new highly active and selective catalyst for the synthesis of beta-lactones from CO and epoxides is reported. The catalyst, [(N,N'-bis(3,5-di-tert-butylsalicylidene) phenylenediamino)Al(THF)2][Co(CO)4] ([(salph)Al(THF)2][Co(CO)4]) is easily prepared from the corresponding (salph)AlCl and NaCo(CO)4. At 50 degrees C and 880 psi of CO, the catalyst (1 mol %) carbonylates epoxides such as propylene oxide, 1-butene oxide, epichlorohydrin, and isobutylene oxide to the lactones beta-butyrolactone, beta-valerolactone, gamma-chloro-beta-butyrolactone, and beta-methyl-beta-butyrolactone in high yield. (R)-Propylene oxide was carbonylated to (R)-beta-butyrolactone with retention of stereochemistry.


Subject(s)
Epoxy Compounds/chemistry , Lactones/chemical synthesis , Catalysis , Cobalt/chemistry , Hydroxybutyrates/chemistry , Polyesters/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...