Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 109(2-1): 024605, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38491599

ABSTRACT

Sound waves are attenuated as they propagate in amorphous materials. We investigate the mechanism driving sound attenuation in the Rayleigh scattering regime by resolving the dynamics of an excited phonon in time and space via numerical simulations. We find sound attenuation is spatiotemporally heterogeneous. It starts in localized regions, which identify soft regions within the material and correlate with low-frequency vibrational modes. As time progresses, the regions where sound is primarily attenuated invade the system via an apparent diffusive process.

2.
Phys Rev Lett ; 127(21): 215504, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34860101

ABSTRACT

The vibrational density of states D(ω) of solids controls their thermal and transport properties. In crystals, the low-frequency modes are extended phonons distributed in frequency according to Debye's law, D(ω)∝ω^{2}. In amorphous solids, phonons are damped, and at low frequency D(ω) comprises extended modes in excess over Debye's prediction, leading to the so-called boson peak in D(ω)/ω^{2} at ω_{bp}, and quasilocalized ones. Here we show that boson peak and phonon attenuation in the Rayleigh scattering regime are related, as suggested by correlated fluctuating elasticity theory, and that amorphous materials can be described as homogeneous isotropic elastic media punctuated by quasilocalized modes acting as elastic heterogeneities. Our numerical results resolve the conflict between theoretical approaches attributing amorphous solids' vibrational anomalies to elastic disorder and localized defects.

3.
Phys Rev E ; 103(5-1): 052606, 2021 May.
Article in English | MEDLINE | ID: mdl-34134343

ABSTRACT

We investigate the emergence of isotropic linear elasticity in amorphous and polycrystalline solids via extensive numerical simulations. We show that the elastic properties are correlated over a finite length scale ξ_{E}, so that the central limit theorem dictates the emergence of continuum linear isotropic elasticity on increasing the specimen size. The stiffness matrix of systems of finite size L>ξ_{E} is obtained, adding to that predicted by linear isotropic elasticity a random one of spectral norm (L/ξ_{E})^{-3/2} in three spatial dimensions. We further demonstrate that the elastic length scale corresponds to that of structural correlations, which in polycrystals reflect the typical size of the grain boundaries and length scales characterizing correlations in the stress field. We finally demonstrate that the elastic length scale affects the decay of the anisotropic long-range correlations of locally defined shear modulus and shear stress.

4.
Phys Rev Lett ; 124(12): 128002, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32281839

ABSTRACT

When grains are added to a cylinder, the weight at the bottom is smaller than the total weight of the column, which is partially supported by the lateral walls through frictional interactions with the grains. This is known as the Janssen effect. Via a combined experimental and numerical investigation, here we demonstrate a reverse Jansen effect whereby the fraction of the weight supported by the base overcomes one. We characterize the dependence of this phenomenon on the various control parameters involved, rationalize the physical process causing the emergence of the compressional frictional forces responsible for the anomaly, and introduce a model to reproduce our findings. Contrary to prior assumptions, our results demonstrate that the constitutive relation on a material element can depend on the applied stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...