Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Inherit Metab Dis ; 46(6): 1170-1185, 2023 11.
Article in English | MEDLINE | ID: mdl-37540500

ABSTRACT

CAD is a large, 2225 amino acid multienzymatic protein required for de novo pyrimidine biosynthesis. Pathological CAD variants cause a developmental and epileptic encephalopathy which is highly responsive to uridine supplements. CAD deficiency is difficult to diagnose because symptoms are nonspecific, there is no biomarker, and the protein has over 1000 known variants. To improve diagnosis, we assessed the pathogenicity of 20 unreported missense CAD variants using a growth complementation assay that identified 11 pathogenic variants in seven affected individuals; they would benefit from uridine treatment. We also tested nine variants previously reported as pathogenic and confirmed the damaging effect of seven. However, we reclassified two variants as likely benign based on our assay, which is consistent with their long-term follow-up with uridine. We found that several computational methods are unreliable predictors of pathogenic CAD variants, so we extended the functional assay results by studying the impact of pathogenic variants at the protein level. We focused on CAD's dihydroorotase (DHO) domain because it accumulates the largest density of damaging missense changes. The atomic-resolution structures of eight DHO pathogenic variants, combined with functional and molecular dynamics analyses, provided a comprehensive structural and functional understanding of the activity, stability, and oligomerization of CAD's DHO domain. Combining our functional and protein structural analysis can help refine clinical diagnostic workflow for CAD variants in the genomics era.


Subject(s)
Dihydroorotase , Proteins , Humans , Dihydroorotase/chemistry , Dihydroorotase/genetics , Dihydroorotase/metabolism , Mutation, Missense , Uridine
2.
J Med Genet ; 60(7): 627-635, 2023 07.
Article in English | MEDLINE | ID: mdl-36357165

ABSTRACT

BACKGROUND: Enzymes of the Golgi implicated in N-glycan processing are critical for brain development, and defects in many are defined as congenital disorders of glycosylation (CDG). Involvement of the Golgi mannosidase, MAN2A2 has not been identified previously as causing glycosylation defects. METHODS: Exome sequencing of affected individuals was performed with Sanger sequencing of the MAN2A2 transcript to confirm the variant. N-glycans were analysed in patient-derived lymphoblasts to determine the functional effects of the variant. A cell-based complementation assay was designed to assess the pathogenicity of identified variants using MAN2A1/MAN2A2 double knock out HEK293 cell lines. RESULTS: We identified a multiplex consanguineous family with a homozygous truncating variant p.Val1101Ter in MAN2A2. Lymphoblasts from two affected brothers carrying the same truncating variant showed decreases in complex N-glycans and accumulation of hybrid N-glycans. On testing of this variant in the developed complementation assay, we see the complete lack of complex N-glycans. CONCLUSION: Our findings show that pathogenic variants in MAN2A2 cause a novel autosomal recessive CDG with neurological involvement and facial dysmorphism. Here, we also present the development of a cell-based complementation assay to assess the pathogenicity of MAN2A2 variants, which can also be extended to MAN2A1 variants for future diagnosis.


Subject(s)
Congenital Disorders of Glycosylation , Male , Humans , Glycosylation , HEK293 Cells , Homozygote , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism , Polysaccharides/metabolism , Mannosidases/metabolism
3.
Front Cell Dev Biol ; 10: 979096, 2022.
Article in English | MEDLINE | ID: mdl-36393834

ABSTRACT

Saul-Wilson syndrome is a rare skeletal dysplasia caused by a heterozygous mutation in COG4 (p.G516R). Our previous study showed that this mutation affected glycosylation of proteoglycans and disturbed chondrocyte elongation and intercalation in zebrafish embryos expressing the COG4p.G516R variant. How this mutation causes chondrocyte deficiencies remain unsolved. To analyze a disease-relevant cell type, COG4p.G516R variant was generated by CRISPR knock-in technique in the chondrosarcoma cell line SW1353 to study chondrocyte differentiation and protein secretion. COG4p.G516R cells display impaired protein trafficking and altered COG complex size, similar to SWS-derived fibroblasts. Both SW1353 and HEK293T cells carrying COG4p.G516R showed very modest, cell-type dependent changes in N-glycans. Using 3D culture methods, we found that cells carrying the COG4p.G516R variant made smaller spheroids and had increased apoptosis, indicating impaired in vitro chondrogenesis. Adding WT cells or their conditioned medium reduced cell death and increased spheroid sizes of COG4p.G516R mutant cells, suggesting a deficiency in secreted matrix components. Mass spectrometry-based secretome analysis showed selectively impaired protein secretion, including MMP13 and IGFBP7 which are involved in chondrogenesis and osteogenesis. We verified reduced expression of chondrogenic differentiation markers, MMP13 and COL10A1 and delayed response to BMP2 in COG4p.G516R mutant cells. Collectively, our results show that the Saul-Wilson syndrome COG4p.G516R variant selectively affects the secretion of multiple proteins, especially in chondrocyte-like cells which could further cause pleiotropic defects including hampering long bone growth in SWS individuals.

4.
Biochem Biophys Rep ; 26: 101028, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34095554

ABSTRACT

Chronic mucoid Pseudomonas aeruginosa infections are a major scourge in cystic fibrosis patients. Mucoid P. aeruginosa displays structured alginate-rich biofilms that are resistant to antibiotics. Here, we have assessed the efficacy of a panel of alginate lyases in combating mucoid P. aeruginosa biofilms in cystic fibrosis. Albeit we could not demonstrate alginate degradation by alginate lyases in sputum, we demonstrate that the endotypic alginate lyases, CaAly (from Cellulophaga algicola) and VspAlyVI (from Vibrio sp. QY101) and the exotypic alginate lyases, FspAlyFRB (from Falsirhodobacterium sp. alg1), and SA1-IV (from Sphingomonas sp. A1), indeed inhibit biofilm formation by a mucoid P. aeruginosa strain isolated from the sputum of a cystic fibrosis patient with comparative effect to that of the glycoside hydrolase PslG, a promising candidate for biofilm treatment. We believe that these enzymes should be explored for in vivo efficacy in future studies.

5.
IUBMB Life ; 73(2): 444-462, 2021 02.
Article in English | MEDLINE | ID: mdl-33350564

ABSTRACT

Alginate lyases are potential agents for disrupting alginate-rich Pseudomonas biofilms in the infected lungs of cystic fibrosis patients but there is as yet no clinically approved alginate lyase that can be used as a therapeutic. We report here the endolytic alginate lyase activity of a recombinant Cellulophaga algicola alginate lyase domain (CaAly) encoded by a gene that also codes for an N-terminal carbohydrate-binding module, CBM6, and a central F-type lectin domain (CaFLD). CaAly degraded both polyM and polyG alginates with optimal temperature and pH of 37°C and pH 7, respectively, with greater preference for polyG. Recombinant CaFLD bound to fucosylated glycans with a preference for H-type 2 glycan motif, and did not have any apparent effect on the enzyme activity of the co-associated alginate lyase domain in the recombinant protein construct, CaFLD_Aly. We assessed the potential of CaAly and other alginate lyases previously reported in published literature to inhibit biofilm formation by a clinical strain, Pseudomonas aeruginosa MCC 2081. Of all the alginate lyases tested, CaAly displayed most inhibition of in vitro biofilm formation on plastic surfaces. We also assessed its inhibitory ability against P. aeruginosa 2081 biofilms formed over a monolayer of A549 lung epithelial cells. Our study indicated that CaAly is efficacious in inhibition of biofilm formation even on A549 lung epithelial cell line monolayers.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Bacterial Proteins/administration & dosage , Biofilms/drug effects , Flavobacteriaceae/enzymology , Polysaccharide-Lyases/administration & dosage , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , A549 Cells , Biofilms/growth & development , Humans , Polysaccharide-Lyases/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/isolation & purification
6.
Biochem Biophys Res Commun ; 532(1): 54-59, 2020 10 29.
Article in English | MEDLINE | ID: mdl-32819714

ABSTRACT

F-type lectins are typically L-fucose binding proteins with characteristic L-fucose-binding and calcium-binding sequence motifs, and an F-type lectin fold. An exception is Ranaspumin-4, an F-type lectin of the Tungra frog, Engystomops pustulosus. Ranaspumin-4 is D-galactose specific and does not bind to L-fucose although it has the conserved L-fucose binding sequence motif and shares overall sequence similarity with other F-type lectins. Here, we report the detailed glycan-binding profile of wild-type Ranaspumin-4 using hemagglutination inhibition assays, flow cytometry assays and enzyme-linked lectin assays, and identify residues important for D-galactose recognition using rational site-directed mutagenesis. We demonstrate that Ranaspumin-4 binds to terminal D-galactose in α or ß linkage with preference for α1-3, α1-4, ß1-3, and ß1-4 linkages. Further, we find that a methionine residue (M31) in Ranaspumin-4 that occurs in place of a conserved Gln residue (in other F-type lectins), supports D-galactose recognition. Resides Q42 and F156 also likely aid in D-galactose recognition.


Subject(s)
Amphibian Proteins/metabolism , Galactose/metabolism , Lectins/metabolism , Amino Acid Sequence , Amphibian Proteins/chemistry , Amphibian Proteins/genetics , Animals , Anura/genetics , Anura/metabolism , Binding Sites/genetics , Fucose/metabolism , Galectins/chemistry , Galectins/genetics , Galectins/metabolism , Lectins/chemistry , Lectins/genetics , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation
7.
Glycobiology ; 28(12): 933-948, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30202877

ABSTRACT

Individual lectin-carbohydrate interactions are usually of low affinity. However, high avidity is frequently attained by the multivalent presentation of glycans on biological surfaces coupled with the occurrence of high order lectin oligomers or tandem repeats of lectin domains in the polypeptide. F-type lectins are l-fucose binding lectins with a typical sequence motif, HX(26)RXDX(4)R/K, whose residues participate in l-fucose binding. We previously reported the presence of a few eukaryotic F-type lectin domains with partial sequence duplication that results in the presence of two l-fucose-binding sequence motifs. We hypothesized that such partial sequence duplication would result in greater avidity of lectin-ligand interactions. Inspired by this example from Nature, we attempted to engineer a bacterial F-type lectin domain from Streptosporangium roseum to attain avid binding by mimicking partial duplication. The engineered lectin demonstrated 12-fold greater binding strength than the wild-type lectin to multivalent fucosylated glycoconjugates. However, the affinity to the monosaccharide l-fucose in solution was similar and partial sequence duplication did not result in an additional functional l-fucose binding site. We also cloned, expressed and purified a Branchiostoma floridae F-type lectin domain with naturally occurring partial sequence duplication and confirmed that the duplicated region with the F-type lectin sequence motif did not participate in l-fucose binding. We found that the greater binding strength of the engineered lectin from S. roseum was instead due to increased oligomerization. We believe that this Nature-inspired strategy might be useful for engineering lectins to improve binding strength in various applications.


Subject(s)
Glycoconjugates/chemistry , Lectins/chemistry , Protein Engineering , Actinobacteria/chemistry , Animals , Binding Sites , Lancelets/chemistry
8.
Glycobiology ; 28(11): 860-875, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30169639

ABSTRACT

F-type lectins are phylogenetically widespread but selectively distributed fucose-binding lectins with L-fucose- and calcium-binding sequence motifs and an F-type lectin fold. Bacterial F-type lectin domains frequently occur in tandem with various protein domains in diverse architectures, indicating a possible role in directing enzyme activities or other biological functions to distinct fucosylated niches. Here, we report the biochemical characterization of a Streptosporangium roseum protein containing an F-type lectin domain in tandem with an NPCBM-associated domain and a family GH 29A alpha-l-fucosidase domain. We show that the F-type lectin domain of this protein recognizes fucosylated glycans in both α and ß linkages but has high affinity for a Fuc-α-1,2-Gal motif and that the alpha-l-fucosidase domain displays hydrolytic activity on glycan substrates with α1-2 and α1-4 linked fucose. We also show that the F-type lectin domain does not have any effect on the activity of the cis-positioned alpha-l-fucosidase domain with the synthetic substrate, 4-Methylumbelliferyl-alpha-l-fucopyranoside or on inhibition of this activity by l-fucose or deoxyfuconojirimycin hydrochloride. However, the F-type lectin domain together with the NPCBM-associated domain enhances the activity of the cis-positioned alpha-l-fucosidase domain for soluble fucosylated oligosaccharide substrates. While there are many reports of glycoside hydrolase activity towards insoluble and soluble polysaccharides being enhanced by cis-positioned carbohydrate binding modules on the polypeptide, this is the first report, to our knowledge, of enhancement of activity towards aqueous, freely diffusible, small oligosaccharides. We propose a model involving structural stabilization and a bind-and-jump action mediated by the F-type lectin domain to rationalize our findings.


Subject(s)
Actinobacteria/enzymology , Lectins/metabolism , alpha-L-Fucosidase/metabolism , 1-Deoxynojirimycin/analogs & derivatives , 1-Deoxynojirimycin/pharmacology , Fucose/pharmacology , Lectins/chemistry , Mutation , Sequence Analysis, Protein , Sugar Alcohols/pharmacology , alpha-L-Fucosidase/antagonists & inhibitors , alpha-L-Fucosidase/genetics
9.
Adv Exp Med Biol ; 1112: 345-363, 2018.
Article in English | MEDLINE | ID: mdl-30637709

ABSTRACT

F-type lectins are phylogenetically widespread albeit selectively distributed lectins with an L-fucose-binding sequence motif and an F-type lectin fold. Several F-type lectins from fishes have been extensively studied, and structural information is available for F-type lectin domains from fish and bacterial proteins. F-type lectins have been demonstrated to be involved in self-/nonself-recognition and therefore have an important role in pathogen defense in many metazoan animals. F-type lectin domains also have been implicated in functions related to fertilization, protoplast regeneration, and bacterial virulence. We have recently analyzed and reported the taxonomic spread, phylogenetic distribution, architectural contexts, and sequence characteristics of prokaryotic and eukaryotic F-type lectin domains. Interestingly, while eukaryotic F-type lectin domains were frequently present as stand-alone domains, bacterial F-type lectin domains were mostly found co-occurring with enzymatic or nonenzymatic domains in diverse domain architectures, suggesting that the F-type lectin domain might be involved in targeting enzyme activities or directing other biological functions to distinct glycosylated niches in bacteria. We and others have probed the fine oligosaccharide-binding specificity of several F-type lectin domains. The currently available wealth of sequence, structural, and biochemical information about F-type lectin domains provides opportunities for the generation of designer lectins with improved binding strength and altered binding specificities. We discuss the prevalence, provenance, properties, peculiarities, and potential of F-type lectin domains for future applications in this review.


Subject(s)
Lectins/chemistry , Animals , Bacterial Proteins , Phylogeny , Protein Domains
10.
Biochem Biophys Res Commun ; 491(3): 708-713, 2017 09 23.
Article in English | MEDLINE | ID: mdl-28751211

ABSTRACT

F-type lectins are fucose binding lectins with characteristic fucose binding and calcium binding motifs. Although they occur with a selective distribution in viruses, prokaryotes and eukaryotes, most biochemical studies have focused on vertebrate F-type lectins. Recently, using sensitive bioinformatics search techniques on the non-redundant database, we had identified many microbial F-type lectin domains with diverse domain organizations. We report here the biochemical characterization of F-type lectin domains from Cyanobium sp. PCC 7001, Myxococcus hansupus and Leucothrix mucor. We demonstrate that while all these three microbial F-type lectin domains bind to the blood group H antigen epitope on fucosylated glycans, there are fine differences in their glycan binding specificity. Cyanobium sp. PCC 7001 F-type lectin domain binds exclusively to extended H type-2 motif, Myxococcus hansupus F-type lectin domain binds to B, H type-1 and Lewisb motifs, and Leucothrix mucor F-type lectin domain binds to a wide range of fucosylated glycans, including A, B, H and Lewis antigens. We believe that these microbial lectins will be useful additions to the glycobiologist's toolbox for labeling, isolating and visualizing glycans.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Blood Group Antigens/chemistry , Blood Group Antigens/ultrastructure , Lectins/chemistry , Lectins/ultrastructure , Binding Sites , Models, Chemical , Molecular Docking Simulation , Protein Binding , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...