Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 463(4): 756-61, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26051281

ABSTRACT

The recent 2013-15 epidemic of Ebola virus disease (EVD) has initiated extensive sequencing and analysis of ebolavirus genomes. All ebolavirus genomes available until December 2014 have been collated and analyzed in this study to obtain phylogenetic relationship and uncover the variations amongst them. The terminal 'leader' and 'trailer' nucleotide sequences of the genomes were omitted and analysis of the intermediate region accommodating the sole seven genes (hepta-CDS region) of the virus showed relative stability of the genome, including the ones isolated from the current epidemic. The genome information was scrutinized to detect the variation in the surface glycoprotein gene and annotate its three protein products, resulting from its atypical transcription. This study will make an easy understanding of the genomes for those who desire to exploit the genome sequences for different investigations in EVD.


Subject(s)
Ebolavirus/genetics , Genome, Viral , Glycoproteins/genetics , Viral Proteins/genetics , Glycoproteins/metabolism , Glycosylation , Phylogeny , Transcription, Genetic , Viral Proteins/metabolism
2.
Gene ; 497(1): 83-9, 2012 Apr 10.
Article in English | MEDLINE | ID: mdl-22305982

ABSTRACT

The formation and breaking of hydrogen bonds between nucleic acid bases are dependent on temperature. The high G+C content of organisms was surmised to be an adaptation for high temperature survival because of the thermal stability of G:C pairs. However, a survey of genomic GC% and optimum growth temperature (OGT) of several prokaryotes revoked any direct relation between them. Significantly high purine (R=A or G) content in mRNAs is also seen as a selective response for survival among thermophiles. Nevertheless, the biological relevance of thermophiles loading their unstable mRNAs with excess purines (purine-loading or R-loading) is not persuasive. Here, we analysed the mRNA sequences from the genomes of 168 prokaryotes (as obtained from NCBI Genome database) with their OGTs ranging from -5 °C to 100 °C to verify the relation between R-loading and OGT. Our analysis fails to demonstrate any correlation between R-loading of the mRNA pool and OGT of a prokaryote. The percentage of purine-loaded mRNAs in prokaryotes is found to be in a rough negative correlation with the genomic GC% (r(2)=0.655, slope=-1.478, P<000.1). We conclude that genomic GC% and bias against certain combinations of nucleotides drive the mRNA-synonymous (sense) strands of DNA towards variations in R-loading.


Subject(s)
Base Composition , Prokaryotic Cells/physiology , Purines , RNA, Messenger/chemistry , Temperature , Databases, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...