Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Drug Metab Dispos ; 52(3): 198-209, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38123948

ABSTRACT

Microphysiological systems (MPS) are comprised of one or multiple cell types of human or animal origins that mimic the biochemical/electrical/mechanical responses and blood-tissue barrier properties of the cells observed within a complex organ. The goal of incorporating these in vitro systems is to expedite and advance the drug discovery and development paradigm with improved predictive and translational capabilities. Considering the industry need for improved efficiency and the broad challenges of model qualification and acceptance, the International Consortium for Innovation and Quality (IQ) founded an IQ MPS working group in 2014 and Affiliate in 2018. This group connects thought leaders and end users, provides a forum for crosspharma collaboration, and engages with regulators to qualify translationally relevant MPS models. To understand how pharmaceutical companies are using MPS, the IQ MPS Affiliate conducted two surveys in 2019, survey 1, and 2021, survey 2, which differed slightly in the scope of definition of the complex in vitro models under question. The surveys captured demographics, resourcing, rank order for organs of interest, compound modalities tested, and MPS organ-specific questions, including nonclinical species needs and cell types. The major focus of this manuscript is on results from survey 2, where we specifically highlight the context of use for MPS within safety, pharmacology, or absorption, disposition, metabolism, and excretion and discuss considerations for including MPS data in regulatory submissions. In summary, these data provide valuable insights for developers, regulators, and pharma, offering a view into current industry practices and future considerations while highlighting key challenges impacting MPS adoption. SIGNIFICANCE STATEMENT: The application of microphysiological systems (MPS) represents a growing area of interest in the drug discovery and development framework. This study surveyed 20+ pharma companies to understand resourcing, current areas of application, and the key challenges and barriers to internal MPS adoption. These results will provide regulators, tech providers, and pharma industry leaders a starting point to assess the current state of MPS applications along with key learnings to effectively realize the potential of MPS as an emerging technology.


Subject(s)
Drug Industry , Microphysiological Systems , Animals , Humans , Drug Discovery
3.
J Pharmacol Toxicol Methods ; 123: 107468, 2023.
Article in English | MEDLINE | ID: mdl-37553032

ABSTRACT

In drug discovery, during the lead optimization and candidate characterization stages, novel small molecules are frequently evaluated in a battery of in vitro pharmacology assays to identify potential unintended, off-target interactions with various receptors, transporters, ion channels, and enzymes, including kinases. Furthermore, these screening panels may also provide utility at later stages of development to provide a mechanistic understanding of unexpected safety findings. Here, we present a compendium of the most likely functional and pathological outcomes associated with interaction(s) to a panel of 95 kinases based on an extensive curation of the scientific literature. This panel of kinases was designed by AbbVie based on safety-related data extracted from the literature, as well as from over 20 years of institutional knowledge generated from discovery efforts. For each kinase, the scientific literature was reviewed using online databases and the most often reported functional and pathological effects were summarized. This work should serve as a practical guide for small molecule drug discovery scientists and clinical investigators to predict and/or interpret adverse effects related to pharmacological interactions with these kinases.


Subject(s)
Drug Discovery , Databases, Factual
5.
J Pharmacol Toxicol Methods ; 120: 107251, 2023.
Article in English | MEDLINE | ID: mdl-36792039

ABSTRACT

INTRODUCTION: Secondary pharmacology profiling is routinely applied in pharmaceutical drug discovery to investigate the pharmaceutical effects of a drug at molecular targets distinct from (off-target) the intended therapeutic molecular target (on-target). Data from a randomized, placebo-controlled clinical trial, the APPROVe (Adenomatous Polyp Prevention on VIOXX, rofecoxib) trial, raised significant concerns about COX-2 inhibition as a primary or secondary target, shaping the screening and decision-making processes of some pharmaceutical companies. COX-2 is often included in off-target screens due to cardiovascular (CV) safety concerns about secondary interactions with this target. Several potential mechanisms of COX-2-mediated myocardial infarctions have been considered including, effects on platelet stickiness/aggregation, vasal tone and blood pressure, and endothelial cell activation. In the present study, we focused on each of these mechanisms as potential effects of COX-2 inhibitors, to find evidence of mechanism using various in vitro and in vivo preclinical models. METHODS: Compounds tested in the study, with a range of COX-2 selectivity, included rofecoxib, celecoxib, etodolac, and meloxicam. Compounds were screened for inhibition of COX-2 vs COX-1 enzymatic activity, ex vivo platelet aggregation (using whole blood from multiple species), ex vivo canine femoral vascular ring model, in vitro human endothelial cell activation (with and without COX-2 induction), and in vivo cardiovascular assessment (anesthetized dog). RESULTS: The COX-2 binding assessment generally confirmed the COX-2 selectivity previously reported. COX-2 inhibitors did not have effects on platelet function (spontaneous aggregation or inhibition of aggregation), cardiovascular parameters (mean arterial pressure, heart rate, and left ventricular contractility), or endothelial cell activation. However, rofecoxib uniquely produced an endothelial mediated constriction response in canine femoral arteries. CONCLUSION: Our data suggest that rofecoxib-related cardiovascular events in humans are not predicted by COX-2 potency or selectivity. In addition, the vascular ring model suggested possible adverse cardiovascular effects by COX-2 inhibitors, although these effects were not seen in vivo studies. These results may also suggest that COX-2 inhibition alone is not responsible for rofecoxib-mediated adverse cardiovascular outcomes.


Subject(s)
Cardiovascular Diseases , Vascular Ring , Animals , Dogs , Humans , Cyclooxygenase 2 Inhibitors/adverse effects , Cyclooxygenase 2 , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/drug therapy , Risk Factors , Heart Disease Risk Factors , Pharmaceutical Preparations , Anti-Inflammatory Agents, Non-Steroidal/adverse effects
7.
Commun Med (Lond) ; 2(1): 154, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36473994

ABSTRACT

BACKGROUND: Conventional preclinical models often miss drug toxicities, meaning the harm these drugs pose to humans is only realized in clinical trials or when they make it to market. This has caused the pharmaceutical industry to waste considerable time and resources developing drugs destined to fail. Organ-on-a-Chip technology has the potential improve success in drug development pipelines, as it can recapitulate organ-level pathophysiology and clinical responses; however, systematic and quantitative evaluations of Organ-Chips' predictive value have not yet been reported. METHODS: 870 Liver-Chips were analyzed to determine their ability to predict drug-induced liver injury caused by small molecules identified as benchmarks by the Innovation and Quality consortium, who has published guidelines defining criteria for qualifying preclinical models. An economic analysis was also performed to measure the value Liver-Chips could offer if they were broadly adopted in supporting toxicity-related decisions as part of preclinical development workflows. RESULTS: Here, we show that the Liver-Chip met the qualification guidelines across a blinded set of 27 known hepatotoxic and non-toxic drugs with a sensitivity of 87% and a specificity of 100%. We also show that this level of performance could generate over $3 billion annually for the pharmaceutical industry through increased small-molecule R&D productivity. CONCLUSIONS: The results of this study show how incorporating predictive Organ-Chips into drug development workflows could substantially improve drug discovery and development, allowing manufacturers to bring safer, more effective medicines to market in less time and at lower costs.


Drug development is lengthy and costly, as it relies on laboratory models that fail to predict human reactions to potential drugs. Because of this, toxic drugs sometimes go on to harm humans when they reach clinical trials or once they are in the marketplace. Organ-on-a-Chip technology involves growing cells on small devices to mimic organs of the body, such as the liver. Organ-Chips could potentially help identify toxicities earlier, but there is limited research into how well they predict these effects compared to conventional models. In this study, we analyzed 870 Liver-Chips to determine how well they predict drug-induced liver injury, a common cause of drug failure, and found that Liver-Chips outperformed conventional models. These results suggest that widespread acceptance of Organ-Chips could decrease drug attrition, help minimize harm to patients, and generate billions in revenue for the pharmaceutical industry.

8.
Front Genet ; 13: 1078050, 2022.
Article in English | MEDLINE | ID: mdl-36733943

ABSTRACT

The evaluation of toxicity in preclinical species is important for identifying potential safety liabilities of experimental medicines. Toxicology studies provide translational insight into potential adverse clinical findings, but data interpretation may be limited due to our understanding of cross-species biological differences. With the recent technological advances in sequencing and analyzing omics data, gene expression data can be used to predict cross species biological differences and improve experimental design and toxicology data interpretation. However, interpreting the translational significance of toxicogenomics analyses can pose a challenge due to the lack of comprehensive preclinical gene expression datasets. In this work, we performed RNA-sequencing across four preclinical species/strains widely used for safety assessment (CD1 mouse, Sprague Dawley rat, Beagle dog, and Cynomolgus monkey) in ∼50 relevant tissues/organs to establish a comprehensive preclinical gene expression body atlas for both males and females. In addition, we performed a meta-analysis across the large dataset to highlight species and tissue differences that may be relevant for drug safety analyses. Further, we made these databases available to the scientific community. This multi-species, tissue-, and sex-specific transcriptomic database should serve as a valuable resource to enable informed safety decision-making not only during drug development, but also in a variety of disciplines that use these preclinical species.

9.
Mol Ther Methods Clin Dev ; 19: 89-98, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33024793

ABSTRACT

Nonclinical development strategies for gene therapies are unique from other modalities. The European Federation of Pharmaceutical Industries and Associates (EFPIA) Gene Therapy Working Group surveyed EFPIA member and nonmember pharmaceutical and biotechnology companies about their current practices for designing and implementing nonclinical toxicology studies to support the development of viral vector-delivered in vivo gene therapies. Compiled responses from 17 companies indicated that these studies had some variability in species selection, study-design elements, biodistribution, immunogenicity or genomic insertion assessments, safety pharmacology, and regulatory interactions. Although there was some consistency in general practice, there were examples of extreme case-by-case differences. The responses and variability are discussed herein. Key development challenges were also identified. Results from this survey emphasize the importance for harmonization of regulatory guidelines for the development of gene-therapy products, while still allowing for case-by-case flexibility in nonclinical toxicology studies. However, the appropriate timing for a harmonized guidance, particularly with a platform that continues to rapidly evolve, remains in question.

10.
Lab Chip ; 20(4): 697-708, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31967156

ABSTRACT

Within the last 10 years, several tissue microphysiological systems (MPS) have been developed and characterized for retention of morphologic characteristics and specific gene/protein expression profiles from their natural in vivo state. Once developed, their utility is typically further tested by comparing responses to known toxic small-molecule pharmaceuticals in efforts to develop strategies for further toxicity testing of compounds under development. More recently, application of this technology in biopharmaceutical (large molecules) development is beginning to be more appreciated. In this review, we describe some of the advances made for tissue-specific MPS and outline the advantages and challenges of applying and further developing MPS technology in preclinical biopharmaceutical research.


Subject(s)
Biological Products , Research , Toxicity Tests
11.
Adv Clin Chem ; 94: 219-259, 2020.
Article in English | MEDLINE | ID: mdl-31952572

ABSTRACT

Chemotherapy is the most common clinical choice of treatment for cancer, however, acquired chemoresistance is a major challenge that limits the successful outcome of this option. Systematic review of in vitro, in vivo, preclinical and clinical studies suggests that acquired chemoresistance is polygenic, progressive, and involve both genetic and epigenetic heterogeneities and perturbations. Various mechanisms that confer resistance to chemotherapy are tightly controlled by epigenetic regulations. Poised epigenetic plasticity and temporal increase in epigenetic alterations upon chemotherapy make chemoresistance likely an epigenetic-driven process. The transient and reversible nature of epigenetic modulations enable ways to intervene the epigenetic re-programing associated with acquired chemoresistance via application of epigenetic modifying drugs. This review discusses recent understandings behind the various mechanisms of acquired chemoresistance that are under the control of epigenetic drivers, potential application of epigenetic-based drugs in resensitizing refractory cancers to chemotherapy, the limitations and future scope for clinical application of epigenetic therapeutics in successfully addressing chemoresistance.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm , Epigenesis, Genetic/drug effects , DNA Methylation , Humans , Neoplasms/genetics
12.
Pharmacol Ther ; 200: 110-125, 2019 08.
Article in English | MEDLINE | ID: mdl-31028836

ABSTRACT

Antibody-drug conjugates (ADCs) are a promising therapeutic modality for oncology indications. The concept of an ADC platform is to increase the therapeutic index (TI) of chemotherapeutics through more selective delivery of cytotoxic agents to tumor cells while limiting exposure to healthy normal cells. Despite the use of antibodies targeting antigens abundantly and/or exclusively expressed on cancer cells (i.e., target cells), dose limiting toxicities (DLTs) in normal cells/tissues are frequently reported even at suboptimal therapeutic doses. Although advancement of ADC technology has helped to optimize all three key components (i.e., mAb, linker, and payload), DLTs remain a key challenge for ADC development. Mechanisms of ADC toxicity in normal cells/tissues are not clearly understood, but the majority of DLTs are considered to be target-independent. In addition to linker-drug instability contributing to the premature release of cytotoxic drug (payload) in circulation, uptake/trafficking of intact ADCs by both receptor-dependent (FcγRs, FcRn and C-type lectin receptors), and-independent (non-specific endocytosis) mechanisms may contribute to off-target toxicity in normal cells. In this article, we review potential mechanisms of target-independent ADC uptake and toxicity in normal cells, as well as discuss components of ADCs which may influence these mechanisms. This information will provide a deeper understanding of the underlying mechanisms of ADC off-target toxicity and prove helpful toward improving the overall TI of the next generation of ADCs.


Subject(s)
Immunoconjugates/adverse effects , Immunoconjugates/pharmacokinetics , Animals , Biological Transport , Humans
13.
Cancer Drug Resist ; 2(2): 297-312, 2019.
Article in English | MEDLINE | ID: mdl-35582717

ABSTRACT

Acquired resistance to chemotherapy is a major limitation in clinical treatment for breast cancer. Accumulating evidence from in vitro, in vivo and clinical studies suggest that acquired chemoresistance is progressive, multifactorial and involve genetic and epigenetic aberrations. Among various mechanisms that contribute to chemoresistance, cellular reprogramming has extensively been implicated in breast cancer resistance lately. Cellular reprogramming events such as acquisition of epithelial to mesenchymal transition (EMT) and cancer stemness (CSCs) not only provide cancer cells with reversible phenotypic plasticity and survival advantage against cytotoxicity but also leads to aggressiveness, metastasis, clinical resistance, tumor recurrence and poor survival. The transient and reversible nature of cellular reprogramming processes and their controlled interaction with epigenetic regulatory complexes strongly support the involvement of dynamic epigenetic regulatory network in governing the cellular reprogramming and associated acquired chemoresistance. Further, epigenetic modulations are also gaining interest as promising interventions addressing the cancer cell reprogramming machinery to overcome acquired chemoresistance. This review discusses the previous reports and our recent findings that lead to current understanding of epigenetic dysregulation dictating the cellular reprogramming processes such as acquisition of EMT and CSCs phenotype and how they co-ordinate to establish acquired drug resistance in breast cancer.

14.
Eur J Pharm Sci ; 123: 56-69, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30016648

ABSTRACT

Acquired resistance against doxorubicin is a major limitation in clinical treatment of breast cancer. The molecular mechanism behind the aberrant expression of genes leading to doxorubicin resistance is not clear. Epigenetic changes play an important role in the regulation of gene expression. Therefore, the objective of this study was to identify the epigenetic mechanism underlying acquired doxorubicin resistance in breast cancer cells. Doxorubicin-resistant cells were selected by repeated exposure of MCF-7 and MDA-MB-231 breast cancer cell lines to clinically relevant doses of doxorubicin for 18 months. MTT assay, cell cycle analysis, colony formation, qRT-PCR, and Western blot analyses were used to characterize the epigenetic and molecular mechanism. Pyrosequencing was used to detect MSH2 promoter hypermethylation. Aberrant expression of epigenetic regulatory genes, a significant increase in H3 acetylation and methylation, as well as promoter hypermethylation-mediated inactivation of MSH2 gene were associated with the acquired resistant phenotype. Demethylating agent 5-Aza-deoxycytidine and HDAC inhibitor Trichostatin A significantly re-sensitized resistant cells to doxorubicin. Findings of this study revealed that epigenetic aberrations including promoter hypermethylation-mediated inactivation MSH2 contribute to the acquisition of doxorubicin resistance in breast cancer cells. Additionally, our data suggest that some of these epigenetic aberrations are progressive during resistance development and therefore can potentially be used as biomarkers for early detection of resistance. These epigenetic aberrations, being reversible, can also serve as targets for epigenetic therapy to re-sensitize doxorubicin-resistant breast cancer cells. Epigenetic inactivation of mismatch repair gene MSH2 further suggests that loss of MMR-dependent apoptotic potential could be a novel mechanistic basis for the acquisition of doxorubicin resistance in breast cancer cells.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Doxorubicin/therapeutic use , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Epigenomics , Female , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Humans , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , MCF-7 Cells
15.
Curr Protoc Toxicol ; 76(1): e45, 2018 05.
Article in English | MEDLINE | ID: mdl-30040226

ABSTRACT

Hematotoxicity is a significant issue for drug safety and can result from direct cytotoxicity toward circulating mature blood cell types as well as targeting of immature blood-forming stem cells/progenitor cells in the bone marrow. In vitro models for understanding and investigating the hematotoxicity potential of new test items/drugs are critical in early preclinical drug development. The traditional method, colony forming unit (CFU) assay, is commonly used and has been validated as a method for hematotoxicity screening. The CFU assay has multiple limitations for its application in investigative work. In this paper, we describe a detailed protocol for a liquid-culture, microplate-based in vitro hematotoxicity assay to evaluate lineage-specific (myeloid, erythroid, and megakaryocytic) hematotoxicity at different stages of differentiation. This assay has multiple advantages over the traditional CFU assay, including being suitable for high-throughput screening and flexible enough to allow inclusion of additional endpoints for mechanistic studies. Therefore, it is an extremely useful tool for scientists in pharmaceutical discovery and development. © 2018 by John Wiley & Sons, Inc.


Subject(s)
Bone Marrow Cells/drug effects , Cell Differentiation/drug effects , Hematopoietic Stem Cells/drug effects , Toxicity Tests/methods , Cell Lineage/drug effects , Humans , In Vitro Techniques/methods
16.
Eur J Pharm Sci ; 104: 424-433, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28455002

ABSTRACT

Breast cancer is the most common cancer in women for which doxorubicin is still the mainstay treatment. However, chemotherapy resistance is a major limitation in breast cancer treatment. Role of treatment schedule and estrogen receptor (ER) status in subtypes of breast cancers in acquired resistance development is not clear. Therefore, objective of this study was to evaluate whether the treatment schedule and ER status in breast cancer cells influence the doxorubicin resistance. To address these questions, ER-positive MCF-7 and triple-negative MDA-MB-231 breast cancer cell lines were given either continuous or intermittent exposure with clinically relevant concentration of doxorubicin and the influence of these two treatment strategies on resistance to drug sensitivity was evaluated. Results revealed that intermittent treatment but not the continuous treatment induced resistance in breast cancer cells against doxorubicin. MCF-7 cells developed relatively earlier and high level of resistance when compared to MDA-MB-231 cells. Acquisition of epithelial to mesenchymal transition (EMT) and cancer stem cell-like phenotype was also observed during resistance development in MCF-7 cells. Changes in the expression of selected marker genes including drug transporters confirmed doxorubicin resistance in these cells. In summary, this study suggests that acquisition of resistance against doxorubicin depends on the treatment schedule of this drug as well as the estrogen receptor-based subtypes of breast cancer. Additionally, acquisition of EMT and stem cell-like phenotype further provided a molecular basis for breast cancer subtype-dependent chemotherapeutic resistance development. Findings of this study will have significant clinical implications in optimizing the chemotherapy schedule to minimize chemoresistance in breast cancer patients.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Breast Neoplasms/metabolism , Doxorubicin/administration & dosage , Drug Resistance, Neoplasm , Receptors, Estrogen/metabolism , Antibiotics, Antineoplastic/pharmacology , Breast Neoplasms/drug therapy , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/pharmacology , Drug Administration Schedule , Epithelial-Mesenchymal Transition/drug effects , Female , Humans
17.
Oncotarget ; 8(7): 11127-11143, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-27655674

ABSTRACT

Renal Cell Carcinoma (RCC) in humans is positively influenced by oxidative stress status in kidneys. We recently reported that adaptive response to low level of chronic oxidative stress induces malignant transformation of immortalized human renal tubular epithelial cells. Epigenetic alterations in human RCC are well documented, but its role in oxidative stress-induced malignant transformation of kidney cells is not known. Therefore, the objective of this study was to evaluate the potential role of epigenetic changes in chronic oxidative stress-induced malignant transformation of HK-2, human renal tubular epithelial cells. The results revealed aberrant expression of epigenetic regulatory genes involved in DNA methylation (DNMT1, DNMT3a and MBD4) and histone modifications (HDAC1, HMT1 and HAT1) in HK-2 cells malignantly transformed by chronic oxidative stress. Additionally, both in vitro soft agar assay and in vivo nude mice study showing decreased tumorigenic potential of malignantly transformed HK-2 cells following treatment with DNA de-methylating agent 5-aza 2' dC further confirmed the crucial role of DNA hypermethyaltion in oxidative stress-induced malignant transformation. Changes observed in global histone H3 acetylation (H3K9, H3K18, H3K27 and H3K14) and decrease in phospho-H2AX (Ser139) also suggest potential role of histone modifications in increased survival and malignant transformation of HK-2 cells by oxidative stress. In summary, the results of this study suggest that epigenetic reprogramming induced by low levels of oxidative stress act as driver for malignant transformation of kidney epithelial cells. Findings of this study are highly relevant in potential clinical application of epigenetic-based therapeutics for treatments of kidney cancers.


Subject(s)
Cell Transformation, Neoplastic/genetics , Epigenesis, Genetic/genetics , Epithelial Cells/metabolism , Oxidative Stress , Acetylation , Animals , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Blotting, Western , Cell Line , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/metabolism , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/drug effects , DNA Methylation/genetics , DNA Methyltransferase 3A , Decitabine , Enzyme Inhibitors/pharmacology , Epithelial Cells/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Histones/metabolism , Humans , Hydrogen Peroxide/pharmacology , Kidney/cytology , Kidney/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Mice, Nude , Oxidants/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Transplantation, Heterologous
18.
Mol Pharmacol ; 89(1): 27-41, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26519223

ABSTRACT

Renal cell carcinoma is the most common form of kidney cancer and is highly resistant to chemotherapy. Although the role of oxidative stress in kidney cancer is known, the chemotherapeutic response of cancer cells adapted to chronic oxidative stress is not clear. Hence, the effect of oxidative stress on sensitivity to doxorubicin-induced cytotoxicity was evaluated using an in vitro model of human kidney cancer cells adapted to chronic oxidative stress. Results of MTT- and anchorage-independent growth assays and cell cycle analysis revealed significant decrease in sensitivity to doxorubicin in Caki-1 cells adapted to oxidative stress. Changes in the expression of genes involved in drug transport, cell survival, and DNA repair-dependent apoptosis further confirmed increased resistance to doxorubicin-induced cytotoxicity in these cells. Decreased expression of mismatch repair (MMR) gene MSH2 in cells exposed to oxidative stress suggests that loss of MMR-dependent apoptosis could be a potential mechanism for increased resistance to doxorubicin-induced cytotoxicity. Additionally, downregulation of HDAC1, an increase in the level of histone H3 acetylation, and hypermethylation of MSH2 promoter were also observed in Caki-1 cells adapted to chronic oxidative stress. DNA-demethylating agent 5-Aza-2dC significantly restored the expression of MSH2 and doxorubicin-induced cytotoxicity in Caki-1 cells adapted to chronic oxidative stress, suggesting the role of DNA hypermethylation in inactivation of MSH2 expression and consequently MMR-dependent apoptosis in these cells. In summary, this study for the first time provides direct evidence for the role of oxidative stress in chemotherapeutic resistance in renal carcinoma cells potentially through epigenetic mechanism.


Subject(s)
Carcinoma, Renal Cell/metabolism , Doxorubicin/therapeutic use , Drug Resistance, Neoplasm/physiology , Epigenesis, Genetic/physiology , Kidney Neoplasms/metabolism , Oxidative Stress/physiology , Carcinoma, Renal Cell/drug therapy , Cell Line, Tumor , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Epigenesis, Genetic/drug effects , Humans , Kidney Neoplasms/drug therapy , MutS Homolog 2 Protein/antagonists & inhibitors , MutS Homolog 2 Protein/biosynthesis , Oxidative Stress/drug effects
19.
Breast Cancer Res Treat ; 153(1): 41-56, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26208486

ABSTRACT

The role of chronic oxidative stress in the development and aggressive growth of estrogen receptor (ER)-positive breast cancer is well known; however, the mechanistic understanding is not clear. Estrogen-independent growth is one of the features of aggressive subtype of breast cancer. Therefore, the objective of this study was to evaluate the effect of oxidative stress on estrogen sensitivity and expression of nuclear estrogen receptors in ER-positive breast cancer cells. MCF-7 cells chronically exposed to hydrogen peroxide were used as a cell model in this study, and their growth in response to 17-ß estradiol was evaluated by cell viability, cell cycle, and cell migration analysis. Results were further confirmed at molecular level by analysis of gene expressions at transcript and protein levels. Histone H3 modifications, expression of epigenetic regulatory genes, and the effect of DNA demethylation were also analyzed. Loss of growth in response to estrogen with a decrease in ERα expression was observed in MCF-7 cells adapted to chronic oxidative stress. Increases in mtTFA and NRF1 in these cells further suggested the role of mitochondria-dependent redox-sensitive growth signaling as an alternative pathway to estrogen-dependent growth. Changes in expression of epigenetic regulatory genes, levels of histone H3 modifications as well as significant restorations of both ERα expression and estrogen response by 5-Aza-2'-deoxycytidine further confirmed the epigenetic basis for estrogen-independent growth in these cells. In conclusion, results of this study suggest that chronic oxidative stress can convert estrogen-dependent nonaggressive breast cancer cells into estrogen-independent aggressive form potentially by epigenetic mechanism.


Subject(s)
Epigenesis, Genetic , Estrogen Receptor alpha/genetics , Estrogens/metabolism , Gene Silencing , Oxidative Stress , Phenotype , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Disease Progression , Estrogens/pharmacology , Female , Gene Expression Regulation, Neoplastic , Histones/metabolism , Humans , MCF-7 Cells , Mitochondria/genetics , Mitochondria/metabolism , Transcription, Genetic
20.
Breast Cancer Res Treat ; 149(3): 655-68, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25663548

ABSTRACT

Epigenetic therapy by DNA demethylating agent 5-aza-2'-deoxycytidine (5-aza 2'dC) is clinically effective in acute myeloid leukemia; however, it has shown limited results in treatment of breast cancer and has significant toxicity to normal cells. Green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) has anti-cancer and DNA demethylating properties with no significant toxicity toward normal cells. Therefore, the objective of this study was to evaluate the therapeutic efficacy of a combination of non-toxic, low dose of 5-aza 2' dC with EGCG, on growth inhibition of breast cancer cells. Human breast cancer cell lines (MCF-7, MDA-MB 231) and non-tumorigenic MCF-10A breast epithelial cells were treated with either 5-aza 2' dC, EGCG, or their combination for 7 days. Cell growth inhibition was determined by cell count, cell viability, cell cycle, and soft agar assay, whereas genes expression changes were determined by quantitative real-time PCR and/or Western blot analysis. Histone modifications and global DNA methylation changes were determined by Western blot and RAPD-PCR, respectively. The results revealed significantly greater inhibition of growth of breast cancer cells by co-treatment with 5-aza 2' dC and EGCG compared to individual treatments, whereas it has no significant toxicity to MCF-10A cells. This was further confirmed by gene expression analysis. Changes in DNA methylation and histone modifications were also greater in cells with combination treatment. Findings of this study suggest that potentiation of growth inhibition of breast cancer cells by 5-aza 2' dC and EGCG combination treatment, at least in part, is mediated by epigenetic mechanism.


Subject(s)
Breast Neoplasms/drug therapy , Catechin/analogs & derivatives , Cell Proliferation/drug effects , Epigenesis, Genetic/drug effects , Plant Extracts/administration & dosage , Azacitidine/administration & dosage , Azacitidine/analogs & derivatives , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Catechin/administration & dosage , Catechin/chemistry , Cell Survival/drug effects , DNA Methylation/drug effects , Decitabine , Female , Gene Expression Regulation, Neoplastic/drug effects , Histones/genetics , Humans , MCF-7 Cells , Plant Extracts/chemistry , Random Amplified Polymorphic DNA Technique , Tea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...