Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 111(31): E3187-95, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25049413

ABSTRACT

The interaction of the eukaryotic translation initiation factor eIF4E with the initiation factor eIF4G recruits the 40S ribosomal particle to the 5' end of mRNAs, facilitates scanning to the AUG start codon, and is crucial for eukaryotic translation of nearly all genes. Efficient recruitment of the 40S particle is particularly important for translation of mRNAs encoding oncoproteins and growth-promoting factors, which often harbor complex 5' UTRs and require efficient initiation. Thus, inhibiting the eIF4E/eIF4G interaction has emerged as a previously unpursued route for developing anticancer agents. Indeed, we discovered small-molecule inhibitors of this eIF4E/eIF4G interaction (4EGIs) that inhibit translation initiation both in vitro and in vivo and were used successfully in numerous cancer-biology and neurobiology studies. However, their detailed molecular mechanism of action has remained elusive. Here, we show that the eIF4E/eIF4G inhibitor 4EGI-1 acts allosterically by binding to a site on eIF4E distant from the eIF4G binding epitope. Data from NMR mapping and high-resolution crystal structures are congruent with this mechanism, where 4EGI-1 attaches to a hydrophobic pocket of eIF4E between ß-sheet2 (L60-T68) and α-helix1 (E69-N77), causing localized conformational changes mainly in the H78-L85 region. It acts by unfolding a short 310-helix (S82-L85) while extending α-helix1 by one turn (H78-S82). This unusual helix rearrangement has not been seen in any previous eIF4E structure and reveals elements of an allosteric inhibition mechanism leading to the dislocation of eIF4G from eIF4E.


Subject(s)
Eukaryotic Initiation Factor-4E/chemistry , Eukaryotic Initiation Factor-4E/metabolism , Eukaryotic Initiation Factor-4G/metabolism , Hydrazones/chemistry , Hydrazones/metabolism , Thiazoles/chemistry , Thiazoles/metabolism , Allosteric Regulation , Binding Sites , Crystallography, X-Ray , Eukaryotic Initiation Factor-4E/antagonists & inhibitors , Eukaryotic Initiation Factor-4G/chemistry , Humans , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Mutagenesis, Site-Directed , Peptides/chemistry , Peptides/metabolism , Protein Structure, Quaternary , Protein Structure, Secondary , RNA Caps/metabolism , Solutions
2.
J Med Chem ; 57(12): 5094-111, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24827861

ABSTRACT

The 4EGI-1 is the prototypic inhibitor of eIF4E/eIF4G interaction, a potent inhibitor of translation initiation in vitro and in vivo and an efficacious anticancer agent in animal models of human cancers. We report on the design, synthesis, and in vitro characterization of a series of rigidified mimetic of this prototypic inhibitor in which the phenyl in the 2-(4-(3,4-dichlorophenyl)thiazol-2-yl) moiety was bridged into a tricyclic system. The bridge consisted one of the following: ethylene, methylene oxide, methylenesulfide, methylenesulfoxide, and methylenesulfone. Numerous analogues in this series were found to be markedly more potent than the parent prototypic inhibitor in the inhibition of eIF4E/eIF4G interaction, thus preventing the eIF4F complex formation, a rate limiting step in the translation initiation cascade in eukaryotes, and in inhibition of human cancer cell proliferation.


Subject(s)
Antineoplastic Agents/chemical synthesis , Eukaryotic Initiation Factor-4E/antagonists & inhibitors , Eukaryotic Initiation Factor-4G/antagonists & inhibitors , Heterocyclic Compounds, 3-Ring/chemical synthesis , Hydrazones/chemistry , Thiazoles/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Molecular Mimicry , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...