Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Resour Res ; 54(7): 4228-4244, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30319160

ABSTRACT

Soil Moisture Active Passive (SMAP) Level-2 soil moisture retrievals collected during 2015-2017 are used in isolation to estimate 10-day warm-season precipitation and streamflow totals within 145 medium-sized (2,000-10,000 km2) unregulated watersheds in the conterminous United States. The precipitation estimation algorithm, derived from a well documented approach, includes a locally-calibrated loss function component that significantly improves its performance. For the basin-scale water budget analysis, the precipitation and streamflow algorithms are calibrated with two years of SMAP retrievals in conjunction with observed precipitation and streamflow data and are then applied to SMAP retrievals alone during a third year. While estimation accuracy (as measured by the square of the correlation coefficient, r2, between estimates and observations) varies by basin, the average r2 for the basins is 0.53 for precipitation and 0.22 for streamflow. For the subset of 22 basins that calibrate particularly well, the r2 increases to 0.63 for precipitation and to 0.51 for streamflow. The magnitudes of the estimated variables are also accurate, with sample pairs generally clustered about the 1:1 line. The chief limitation to the estimation involves large biases induced during periods of high rainfall; the accuracy of the estimates (in terms of r2 and RMSE) increases significantly when periods of higher rainfall are not considered. The potential for transferability is also demonstrated by calibrating the streamflow estimation equation in one basin and then applying the equation in another. Overall, the study demonstrates that SMAP retrievals contain, all by themselves, information that can be used to estimate large-scale water budgets.

2.
J Hydrometeorol ; 19(4): 727-741, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29983646

ABSTRACT

The assimilation of remotely sensed soil moisture information into a land surface model has been shown in past studies to contribute accuracy to the simulated hydrological variables. Remotely sensed data, however, can also be used to improve the model itself through the calibration of the model's parameters, and this can also increase the accuracy of model products. Here, data provided by the Soil Moisture Active/Passive (SMAP) satellite mission are applied to the land surface component of the NASA GEOS Earth system model using both data assimilation and model calibration in order to quantify the relative degrees to which each strategy improves the estimation of near-surface soil moisture and streamflow. The two approaches show significant complementarity in their ability to extract useful information from the SMAP data record. Data assimilation reduces the ubRMSE (the RMSE after removing the long-term bias) of soil moisture estimates and improves the timing of streamflow variations, whereas model calibration reduces the model biases in both soil moisture and streamflow. While both approaches lead to an improved timing of simulated soil moisture, these contributions are largely independent; joint use of both approaches provides the highest soil moisture simulation accuracy.

3.
J Hydrometeorol ; 18(3): 837-843, 2017 Mar.
Article in English | MEDLINE | ID: mdl-29930485

ABSTRACT

NASA's Soil Moisture Active Passive (SMAP) mission provides global surface soil moisture retrievals with a revisit time of 2-3 days and a latency of 24 hours. Here, to enhance the utility of the SMAP data, we present an approach for improving real-time soil moisture estimates ("nowcasts") and for forecasting soil moisture several days into the future. The approach, which involves using an estimate of loss processes (evaporation and drainage) and precipitation to evolve the most recent SMAP retrieval forward in time, is evaluated against subsequent SMAP retrievals themselves. The nowcast accuracy over the continental United States (CONUS) is shown to be markedly higher than that achieved with the simple yet common persistence approach. The accuracy of soil moisture forecasts, which rely on precipitation forecasts rather than on precipitation measurements, is reduced relative to nowcast accuracy but is still significantly higher than that obtained through persistence.

SELECTION OF CITATIONS
SEARCH DETAIL
...