Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 145: 110404, 2021 07.
Article in English | MEDLINE | ID: mdl-34112407

ABSTRACT

Plant-based aroma chemicals, constituting the essential oils play a great role as the natural flavours and preservatives in the food industries. Many of these metabolites are susceptible to degradation under heat (i.e. thermolabile aroma chemicals) which may influence the organoleptic properties of the end-products e.g. essential oil, oleoresin, dry herb, tea and packaged juice. The current review identified in total 42 thermolabile aroma and/or flavour molecules belonging to monoterpenoids, sesquiterpenoids and phenolics. The probable pathway of their degradation and its promoting conditions were also described. Degradation pathways were categorized into five major classes including oxidation, C-C bond cleavage, elimination, hydrolysis and rearrangement. Numerous evidences were cited in support of the thermosensitivity of these phytochemicals under pyrolytic, thermal heating or gas chromatographic conditions. Various post-harvest processes involved in the manufacturing such as drying and distillation of the crops or thermal treatment of the food-products for storage were highlighted as the root cause of degradation. The influence of thermolabile aroma chemicals to maintain the sensory quality of the end-products such as citrus juices, floral oils and thermally cooked foods was discussed in detail. In the present article, detailed insight into the chemical and sensory aspects of thermosensitive aromas and flavours was provided, covering the period from 1990 up to 2020.


Subject(s)
Odorants , Oils, Volatile , Flavoring Agents , Food Handling , Odorants/analysis , Taste
2.
Phytochem Anal ; 31(1): 28-36, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31243828

ABSTRACT

INTRODUCTION: Curcuma caesia (black turmeric), an essential oil-bearing rhizomatous herb has been a part of ethnomedicinal practices in India and southeast Asian countries since ancient time. Oleochemical profile of black turmeric has been investigated previously by gas chromatography coupled to mass spectrometry (GC-MS) technique from different geographical regions showing a large variation in the identity as well as abundance of the constituents. OBJECTIVES: To develop an analytical method for the reliable analysis of essential oil from black turmeric rhizome through identified chemical markers and to show the credibility of the developed method on real samples. METHODS: The essential oil of black turmeric was analysed through proton nuclear magnetic resonance (1 H-NMR) based method using an internal standard. RESULTS: Four thermolabile sesquiterpene markers were unambiguously identified from the essential oil of black turmeric rhizome. GC-MS based analysis produced an erroneous identification of the constituents. A standardised 1 H-NMR spectroscopy based method was developed for the qualitative and quantitative analysis of the identified chemical markers. The developed method was further utilised for analysing the variation in oleochemical profile across multiple batches of harvest and the rhizomes subjected to different post-harvest storage or drying conditions. CONCLUSION: The identified marker molecules and developed 1 H -NMR spectroscopic method might prove to be a useful tool for the analysis of essential oil and quality control of this endangered crop material. Also, the present study provided information on the preferred drying and storage condition of black turmeric rhizome prior to the extraction of essential oil.


Subject(s)
Curcuma , Oils, Volatile , India , Magnetic Resonance Spectroscopy , Rhizome
SELECTION OF CITATIONS
SEARCH DETAIL
...