Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(10): 6972-6984, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38414993

ABSTRACT

In this work, we have studied the ability of urease immobilized on glutaraldehyde crosslinked chitosan coated magnetic iron oxide nanoparticles (Urease/GA/CS/MIONPs), for the hitherto unreported comparative hydrolysis of urea in synthetic (SUr) and real human urine (HUr). The prepared Urease/GA/CS/MIONPs were characterized by a combination of Fourier transform infrared spectroscopy (FTIR), field emission-scanning-electron-microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and dynamic light scattering (DLS). The nanoconstructs display the highest ammonium ion liberation post-urea hydrolysis in 1/20 or 1/24-fold dilutions of SUr and HUr, respectively. The optimum activity of immobilized urease is observed at pH 7, and the nanoconstructs facilitate efficient urea-hydrolysis till at least 45 °C. Kinetic analysis of the immobilized urease shows km and vmax of 14.81 mM, 12.36 mM, and 18.55 µM min-1 and 10.10 µM min-1, towards SUr and HUr, respectively. The magnetization of the immobilized urease is suitable for reuse across multiple cycles of urea hydrolysis in SUr and HUr. The robust performance of Urease/GA/CS/MIONPs in SUr and HUr is promising for generating ammonium as a useable source of nitrogen from human urine, and underscores the suitability of SUr as a urine mimic for such interventions.

2.
Pharmaceuticals (Basel) ; 13(6)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32526899

ABSTRACT

Sphingosine kinase 1 (SphK1) is one of the well-studied drug targets for cancer and inflammatory diseases. Recently discovered small-molecule inhibitors of SphK1 have been recommended in cancer therapeutics; however, selectivity and potency of first-generation inhibitors are great challenge. In search of effective SphK1 inhibitors, a set of small molecules have been designed and synthesized bearing urea, sulfonylurea, sulfonamide, and sulfonyltriurea groups. The binding affinity of these inhibitors was measured by fluorescence-binding assay and isothermal titration calorimetry. Compounds 1, 5, 6, and 7 showed an admirable binding affinity to the SphK1 in the sub-micromolar range and significantly inhibited SphK1 activity with admirable IC50 values. Molecular docking studies revealed that these compounds fit well into the sphingosine binding pocket of SphK1 and formed significant number of hydrogen bonds and van der Waals interactions. These molecules may be exploited as potent and selective inhibitors of SphK1 that could be implicated in cancer therapeutics after the required in vivo validation.

3.
Cell Chem Biol ; 27(6): 708-718.e10, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32402240

ABSTRACT

Pharmacophore-focused chemical libraries are continuously being created in drug discovery programs, yet screening assays to maximize the usage of such libraries are not fully explored. Here, we report a chemical proteomics approach to reutilizing a focused chemical library of 1,800 indole-containing molecules for discovering uncharacterized ligand-protein pairs. Gel-based protein profiling of the library using a photo-affinity indole probe 1 enabled us to find new ligands for glyoxalase 1 (Glo1), an enzyme involved in the detoxification of methylglyoxal. Structure optimization of the ligands yielded an inhibitor for Glo1 (9). Molecule 9 increased the cellular methylglyoxal levels in human cells and suppressed the osteoclast formation of mouse bone marrow-derived macrophages. X-ray structure analyses revealed that the molecule lies at a site abutting the substrate binding site, which is consistent with the enzyme kinetic profile of 9. Overall, this study exemplifies how chemical proteomics can be used to exploit existing focused chemical libraries.


Subject(s)
Lactoylglutathione Lyase/antagonists & inhibitors , Proteomics , Small Molecule Libraries/pharmacology , Animals , Cells, Cultured , Crystallography, X-Ray , Humans , Kinetics , Lactoylglutathione Lyase/metabolism , Ligands , Male , Mice , Mice, Inbred Strains , Models, Molecular , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry
4.
Int J Biol Macromol ; 115: 961-969, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29704602

ABSTRACT

Selective carbonic anhydrase (CA) inhibitors have gained a lot of importance owing to the implication of specific isoforms of CA in certain diseases like glaucoma, leukemia, cystic fibrosis, and epilepsy. A novel class of sulfonylurea derivatives was synthesized from corresponding sulfonyl chlorides and amines. Compounds with different pendant moieties in the sulfonylurea derivatives show significant interactions with human carbonic anhydrase II (CAII). In vitro evaluation of the sulfonylurea derivatives revealed that three compounds possess admirable inhibitory activity against CAII. Compounds containing methyl (G2), isopropyl (G4) and o-tosyl (G5) groups displayed IC50 (109-137 µm) for CAII. Fluorescence binding and cytotoxicity studies revealed that these compounds are showing good binding affinity (18-34 µM) to CAII and non- toxic to human cells. Further, molecular docking studies of G2, G4 and G5 with CAII showed that these compounds fit nicely in the active site of CAII. Molecular dynamics simulation studies of these compounds complexed with CAII showed that essential interactions were maintained up to 50 ns of simulation. These results indicate the promising nature of the sulfonylurea scaffold towards CAII inhibition and opens scope of hit to-lead optimization for discovery of effective drugs against CAII-associated disorders.


Subject(s)
Carbonic Anhydrase II/antagonists & inhibitors , Sulfonylurea Compounds/chemistry , Sulfonylurea Compounds/pharmacology , Carbonic Anhydrase II/chemistry , Carbonic Anhydrase II/metabolism , Catalytic Domain , HEK293 Cells , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Sulfonylurea Compounds/metabolism
5.
J Mol Model ; 24(3): 69, 2018 Feb 26.
Article in English | MEDLINE | ID: mdl-29480373

ABSTRACT

Designed multi-target ligand (DML) is an emerging strategy for the development of new drugs and involves the engagement of multiple targets with the same moiety. In the context of NSAIDs it has been suggested that targeting the thromboxane prostanoid (TP) receptor along with cyclooxygenase-2 (COX-2) may help to overcome cardiovascular (CVS) complications associated with COXIBs. In the present work, azaisoflavones were studied for their COX-2 and TP receptor binding activities using structure based drug design (SBDD) techniques. Flavonoids were selected as a starting point based on their known COX-2 inhibitory and TP receptor antagonist activity. Iterative design and docking studies resulted in the evolution of a new class scaffold replacing the benzopyran-4-one ring of flavonoids with quinolin-4-one. The docking and binding parameters of these new compounds are found to be promising in comparison to those of selective COX-2 inhibitors, such as SC-558 and celecoxib. Owing to the lack of structural information, a model for the TP receptor was generated using a threading base alignment method with loop optimization performed using an ab initio method. The model generated was validated against known antagonists for TP receptor using docking/MMGBSA. Finally, the molecules that were designed for selective COX-2 inhibition were docked into the active site of the TP receptor. Iterative structural modifications and docking on these molecules generated a series which displays optimum docking scores and binding interaction for both targets. Molecular dynamics studies on a known TP receptor antagonist and a designed molecule show that both molecules remain in contact with protein throughout the simulation and interact in similar binding modes. Graphical abstract ᅟ.


Subject(s)
Cyclooxygenase 2 Inhibitors/chemistry , Isoflavones/chemistry , Receptors, Thromboxane/antagonists & inhibitors , Catalytic Domain , Cyclooxygenase 2/chemistry , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Receptors, Thromboxane/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...