Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 62(32): e202306590, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37321970

ABSTRACT

Bilayer (BL) two-dimensional boron (i.e., borophene) has recently been synthesized and computationally predicted to have promising physical properties for a variety of electronic and energy technologies. However, the fundamental chemical properties of BL borophene that form the foundation of practical applications remain unexplored. Here, we present atomic-level chemical characterization of BL borophene using ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS). UHV-TERS identifies the vibrational fingerprint of BL borophene with angstrom-scale spatial resolution. The observed Raman spectra are directly correlated with the vibrations of interlayer boron-boron bonds, validating the three-dimensional lattice geometry of BL borophene. By virtue of the single-bond sensitivity of UHV-TERS to oxygen adatoms, we demonstrate the enhanced chemical stability of BL borophene compared to its monolayer counterpart by exposure to controlled oxidizing atmospheres in UHV. In addition to providing fundamental chemical insight into BL borophene, this work establishes UHV-TERS as a powerful tool to probe interlayer bonding and surface reactivity of low-dimensional materials at the atomic scale.

2.
Light Sci Appl ; 12(1): 21, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36627289

ABSTRACT

Sub-nanometer-resolved TERS provides a systematic way for investigating tip-molecule interaction and molecular motions, enabling a promising approach to examine on-surface reaction mechanisms and catalysis at the microscopic level.

3.
Nat Commun ; 13(1): 1796, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35379784

ABSTRACT

The chemical interrogation of individual atomic adsorbates on a surface significantly contributes to understanding the atomic-scale processes behind on-surface reactions. However, it remains highly challenging for current imaging or spectroscopic methods to achieve such a high chemical spatial resolution. Here we show that single oxygen adatoms on a boron monolayer (i.e., borophene) can be identified and mapped via ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS) with ~4.8 Å spatial resolution and single bond (B-O) sensitivity. With this capability, we realize the atomically defined, chemically homogeneous, and thermally reversible oxidation of borophene via atomic oxygen in UHV. Furthermore, we reveal the propensity of borophene towards molecular oxygen activation at room temperature and phase-dependent chemical properties. In addition to offering atomic-level insights into the oxidation of borophene, this work demonstrates UHV-TERS as a powerful tool to probe the local chemistry of surface adsorbates in the atomic regime with widespread utilities in heterogeneous catalysis, on-surface molecular engineering, and low-dimensional materials.

4.
Science ; 375(6580): 533-539, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35113713

ABSTRACT

Reconfigurable devices offer the ability to program electronic circuits on demand. In this work, we demonstrated on-demand creation of artificial neurons, synapses, and memory capacitors in post-fabricated perovskite NdNiO3 devices that can be simply reconfigured for a specific purpose by single-shot electric pulses. The sensitivity of electronic properties of perovskite nickelates to the local distribution of hydrogen ions enabled these results. With experimental data from our memory capacitors, simulation results of a reservoir computing framework showed excellent performance for tasks such as digit recognition and classification of electrocardiogram heartbeat activity. Using our reconfigurable artificial neurons and synapses, simulated dynamic networks outperformed static networks for incremental learning scenarios. The ability to fashion the building blocks of brain-inspired computers on demand opens up new directions in adaptive networks.

5.
J Phys Condens Matter ; 34(20)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35196263

ABSTRACT

Surface-bound reactions have become a viable method to develop nanoarchitectures through bottom-up assembly with near atomic precision. However, the bottom-up fabrication of nanostructures on surfaces requires careful consideration of the intrinsic properties of the precursors and substrate as well as the complex interplay of any interactions that arise in the heterogeneous two-dimensional (2D) system. Therefore, it becomes necessary to consider these systems with characterization methods sensitive to such properties with suitable spatial resolution. Here, low temperature ultrahigh vacuum scanning tunneling microscopy (STM) and tip-enhanced Raman spectroscopy (TERS) were used to investigate the formation of 2D covalent networks via coupling reactions of tetra(4-bromophenyl)porphyrin (Br4TPP) molecules on a Ag(100) substrate. Through the combination of STM topographic imaging and TERS vibrational fingerprints, the conformation of molecular precursors on the substrate was understood. Following the thermally activated coupling reaction, STM and TERS imaging confirm the covalent nature of the 2D networks and suggest that the apparent disorder arises from molecular flexibility.

6.
J Am Chem Soc ; 144(5): 2051-2055, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34978804

ABSTRACT

Chemical reactions such as bond dissociation and formation assisted by localized surface plasmons (LSPs) of noble metal nanostructures hold promise in solar-to-chemical energy conversion. However, the precise control of localized plasmons to activate a specific moiety of a molecule, in the presence of multiple chemically equivalent parts within a single molecule, is scarce due to the relatively large lateral distribution of the plasmonic field. Herein, we report the plasmon-assisted dissociation of a specific molecular site (C-Si bond) within a polyfunctional molecule adsorbed on a Cu(100) surface in the scanning tunneling microscope (STM) junction. The molecular site to be activated can be selected by carefully positioning the tip and bringing the tip extremely close to the molecule (atomistic approach), thereby achieving plasmonic nanoconfinement at the tip apex. Furthermore, multiple reactive sites are activated in a sequential manner at the sub-molecular scale, and different sets of products are created and visualized by STM topography and density functional theory (DFT) modeling. The illustration of site-selective activation achieved by localized surface plasmons implies the realization of molecular-scale resolution for bond-selected plasmon-induced chemistry.

7.
J Am Chem Soc ; 143(38): 15624-15634, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34369773

ABSTRACT

Two-dimensional boron monolayers (i.e., borophene) hold promise for a variety of energy, catalytic, and nanoelectronic device technologies due to the unique nature of boron-boron bonds. To realize its full potential, borophene needs to be seamlessly interfaced with other materials, thus motivating the atomic-scale characterization of borophene-based heterostructures. Here, we report the vertical integration of borophene with tetraphenyldibenzoperiflanthene (DBP) and measure the angstrom-scale interfacial interactions with ultrahigh-vacuum tip-enhanced Raman spectroscopy (UHV-TERS). In addition to identifying the vibrational signatures of adsorbed DBP, TERS reveals subtle ripples and compressive strains of the borophene lattice underneath the molecular layer. The induced interfacial strain is demonstrated to extend in borophene by ∼1 nm beyond the molecular region by virtue of 5 Šchemical spatial resolution. Molecular manipulation experiments prove the molecular origins of interfacial strain in addition to allowing atomic control of local strain with magnitudes as small as ∼0.6%. In addition to being the first realization of an organic/borophene vertical heterostructure, this study demonstrates that UHV-TERS is a powerful analytical tool to spectroscopically investigate buried and highly localized interfacial characteristics at the atomic scale, which can be applied to additional classes of heterostructured materials.

8.
ACS Nano ; 15(3): 3578-3585, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33606498

ABSTRACT

On-surface synthesis via covalent coupling of adsorbed precursor molecules on metal surfaces has emerged as a promising strategy for the design and fabrication of novel organic nanoarchitectures with unique properties and potential applications in nanoelectronics, optoelectronics, spintronics, catalysis, etc. Surface-chemistry-driven molecular engineering (i.e., bond cleavage, linkage, and rearrangement) by means of thermal activation, light irradiation, and tip manipulation plays critical roles in various on-surface synthetic processes, as exemplified by the work from the Ernst group in a prior issue of ACS Nano. In this Perspective, we highlight recent advances in and discuss the outlook for on-surface syntheses and molecular engineering of carbon-based nanoarchitectures.

9.
Chemosphere ; 264(Pt 2): 128512, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33049511

ABSTRACT

Synergistic effects of warming on bioconcentration and receptiveness of pollutants are still poorly unravelled in conjunction with cellular and molecular responses. The present study addressed the impact of an environmental relevant dose of chlorpyrifos (organophosphate pesticide), under control (25 °C) and elevated levels of temperature (30 °C, 35 °C) in Bellamya bengalensis, a freshwater gastropod for 60 days across various endpoints. Multiple levels of biomarkers were measured: growth conditions (organ to flesh weight ratio, condition index), oxidative stress status (SOD, CAT, GST, LPO) and DNA damage (Comet assay-3rd, 30th and 60th days only) after acute (24, 48 and 72 h) and long-term exposures (10th, 20th, 30th, 40th, 50th and 60th days). An integrated biomarker response (IBR) strategy was adapted to amalgamate results generated from various biomarkers to assess organism's vulnerability to pesticide pollution and how it may shift with warming climate. Significant changes were observed in growth conditions under longer exposure periods. Acute as well as long-term exposures enhanced the antioxidant and detoxification enzyme activity. DNA damage was extensive under longer exposure to stress howbeit was also significantly escalated under acute severe warming. Antioxidant and detoxification mechanisms fell short in counteracting cellular level damage. The IBR results indicated long-term acclimation of B. bengalensis to elevated temperatures and pesticide contamination lead to an improved tolerance level howbeit, acute stress was more detrimental. This study provided evidence for the efficiency of employing an integrated biomarker approach for B. bengalensis in future bio-monitoring studies.


Subject(s)
Chlorpyrifos , Gastropoda , Water Pollutants, Chemical , Animals , Biomarkers/metabolism , Chlorpyrifos/toxicity , Fresh Water , Gastropoda/metabolism , Oxidative Stress , Temperature , Water Pollutants, Chemical/toxicity
10.
J Chem Phys ; 153(1): 010902, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32640822

ABSTRACT

Tip-enhanced Raman spectroscopy (TERS), a cutting-edge near-field spectroscopic tool, provides invaluable chemical insight with impressive spatial resolution in chemistry-related fields such as molecular and catalytic systems, surface science, two-dimensional materials, and biochemistry. High-resolution TERS, in particular, which has advanced exceptionally in the last five years, provides a unique opportunity to scrutinize single molecules individually. Here, this perspective places emphasis on the basic concepts and recent experimental findings of this state-of-the-art research and concludes with a glimpse of future prospects.

11.
Appl Spectrosc ; 74(11): 1313-1340, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32419485

ABSTRACT

Fundamental understanding of chemistry and physical properties at the nanoscale enables the rational design of interface-based systems. Surface interactions underlie numerous technologies ranging from catalysis to organic thin films to biological systems. Since surface environments are especially prone to heterogeneity, it becomes crucial to characterize these systems with spatial resolution sufficient to localize individual active sites or defects. Spectroscopy presents as a powerful means to understand these interactions, but typical light-based techniques lack sufficient spatial resolution. This review describes the growing number of applications for the nanoscale spectroscopic technique, tip-enhanced Raman spectroscopy (TERS), with a focus on developments in areas that involve measurements in new environmental conditions, such as liquid, electrochemical, and ultrahigh vacuum. The expansion into unique environments enables the ability to spectroscopically define chemistry at the spatial limit. Through the confinement and enhancement of light at the apex of a plasmonic scanning probe microscopy tip, TERS is able to yield vibrational fingerprint information of molecules and materials with nanoscale resolution, providing insight into highly localized chemical effects.

12.
J Therm Biol ; 88: 102494, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32125982

ABSTRACT

Temperature is one of the key environmental factors affecting the eco-physiological responses of living organisms and is considered one of the utmost crucial factors in shaping the fundamental niche of a species. The purpose of the present study is to delineate the physiological response and changes in energy allocation strategy of Bellamya bengalensis, a freshwater gastropod in the anticipated summer elevated temperature in the future by measuring the growth, body conditions (change in total weight, change in organ to flesh weight ratio), physiological energetics (ingestion rate, absorption rate, respiration rate, excretion rate and Scope for Growth) and thermal performance, Arrhenius breakpoint temperature (ABT), thermal critical maxima (CTmax), warming tolerance (WT) as well as thermal safety margin (TSM) through a mesocosm experiment. We exposed the animals to three different temperatures, 25 °C (average habitat temperature for this animal) and elevated temperatures 30 °C, 35 °C for 30 days and changes in energy budget were measured twice (on 15th and 30th day). Significant changes were observed in body conditions as well as physiological energetics. The total body weight as well as the organ/flesh weight ratio, ingestion followed by absorption rate decreased whereas, respiration and excretion rate increased with elevated temperature treatments resulting in a negative Scope for Growth in adverse conditions. Though no profound impact was found on ABT/CTmax, the peak of thermal curve was considerably declined for animals that were reared in higher temperature treatments. Our data reflects that thermal stress greatly impact the physiological functioning and growth patterns of B. bengalensis which might jeopardize the freshwater ecosystem functioning in future climate change scenario.


Subject(s)
Gastropoda/physiology , Temperature , Animals , Eating , Energy Metabolism , Respiratory Rate , Stress, Physiological/physiology
13.
Nanoscale ; 11(42): 19877-19883, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31599305

ABSTRACT

The ability to directly probe the adsorption configurations of organic regioisomeric molecules, specifically nonplanar isomers, on well-defined substrates holds promise to revolutionize fields dependent on nanoscale processes, such as catalysis, surface science, nanotechnology and modern day electronic applications. Herein, the adsorption configurations and surface sensitive interactions of two nonplanar regioisomer, trans- and cis-tetrakispentafluorophenylporphodilactone (trans- and cis-H2F20TPPDL), molecules on (100) surfaces of Ag, Cu and Au were studied and investigated using high resolution scanning tunneling microscopy (STM), combined with ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS). Depending on molecule-substrate interactions, similar "phenyl-up" configurations were observed for these molecules on Ag(100) and Au(100), while a "phenyl-flat" configuration was discovered on a Cu(100) surface. With the help of surface selection rules of TERS, we explain the spectral discrepancies recorded on the Ag and Cu substrate. Furthermore, the intermolecular interactions were addressed using STM analysis on these surfaces after the configurations were determined by TERS. This study sheds light on the distinct configurations of regioisomeric porphodilactone systems (at interfaces) for near-infrared (NIR) photosensitizers and molecular electronics in the near future.

14.
Nano Lett ; 19(5): 3267-3272, 2019 05 08.
Article in English | MEDLINE | ID: mdl-30994356

ABSTRACT

Real space chemical analysis of two structurally very similar components, that is, regioisomers lies at the heart of heterogeneous catalysis reactions, modern-age electronic devices, and various other surface related problems in surface science and nanotechnology. One of the big challenges in surface chemistry is to identify different surface adsorbed molecules and analyze their chemical properties individually. Herein, we report a topological and chemical analysis of two regioisomers, trans- and cis-tetrakispentafluorophenylporphodilactone ( trans- and cis-H2F20TPPDL) molecules by high-resolution scanning tunneling microscopy, and ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS). Both isomeric structures are investigated individually on Ag(100) at liquid nitrogen temperature. Following that, we have successfully distinguished these two regioisomeric molecules simultaneously through TERS with an angstrom scale (8 Å) spatial resolution. Also, the two-component organic heterojunction has been characterized at large scale using high-resolution two-dimensional mapping. Combined with time-dependent density functional theory simulations, we explain the TERS spectral discrepancies for both isomers in the fingerprint region.

15.
J Phys Chem Lett ; 9(21): 6326-6333, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30346779

ABSTRACT

Mono-carboxyl-functionalized azobenzene and arylazopyrazole have been employed for electron-induced and photoinduced switching under ambient conditions. The microscopic structure and the switching behavior is understood using scanning tunneling microscopy. The carboxyl functional group in these molecules offers low threshold energy for the electron-induced reversible switching compared with nonfunctionalized azobenzene. The low threshold is understood using charged intermediate states during the switching. A selectivity has been observed for the photoinduced switching. Because of strong hydrogen bonding, only the free phenyl groups in the molecules change their configuration.

SELECTION OF CITATIONS
SEARCH DETAIL
...