Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 19(10): 1854-1872, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36820826

ABSTRACT

In the recent past, special attention has been paid to the development of metallogels as novel luminescent materials from rationally designed gelators with lanthanide ions, especially europium (Eu(III)) and terbium (Tb(III)) metal ions. Lanthanide (Ln(III)) based metallogels possess various useful properties with an extensive range of applications in the field of advanced materials, and electronic and bio-technologies. Lanthanide ions in coordination with appropriate sensitizer ligands can reproduce metal-based optical, redox, and electronic properties in soft gel materials. The optical properties of the luminescent Ln(III) based metallogels can be tuned over the complete visible spectrum (400-750 nm) including the generation of white light by mixing both Eu(III) and Tb(III) with the ligand in various stoichiometric ratios. Additionally, the dynamic nature of the lanthanide-ligand (Ln-N) coordination bond allows the Ln(III) based metallogels to respond to various external stimuli. Luminescent self-healing supramolecular gels using organic ligands as 'hosts' and Ln(III) ions as 'guests' are also a current topic of research interest. In this review, we discuss and summarize some selected recent examples of newly developed luminescent Eu(III) and Tb(III) based supramolecular metallogels with potential applications in the fields of optoelectronic devices, stimuli responsiveness, self-healing, luminescent films, and sensors.

2.
ACS Appl Mater Interfaces ; 12(52): 58122-58131, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33331153

ABSTRACT

Crystalline two-dimensional organic nanosheets (2D-ONs) having atomic or near-atomic thickness with infinite lateral dimensions are of crucial significance for their possible application as a material for energy storage. The presence of nanofluidic channels with a designed array of molecular interlayers in such 2D-ONs, for a favorable lithium-ion transport, has special significance for improving the efficacy of lithium-ion batteries. However, the rational design of crystalline 2D-ONs remains a challenge because of the lack of appropriate monomers and convenient preparation methods. Herein, we report a unique lithium-ion conducting behavior of zwitterionic 2D-ONs, formed through self-assembly of a small organic molecule AM-1. Different microscopic studies confirm the near-atomic thickness (∼3.5 nm) of these 2D-ONs. Results of the single-crystal X-ray diffraction studies confirm the presence of a one-dimensional (1D) channel in crystalline 2D-ONs, which was generated during the self-assembly process of the zwitterionic monomer scaffold. The presence of immobilized ionic centers with well-defined directional channels in the 2D-ONs favors the transportation of lithium ions with a room-temperature lithium-ion conductivity of 5.14 × 10-5 S cm-1, which is rather unique for self-assembled 2D-ONs.

3.
Chem Commun (Camb) ; 56(57): 7945-7948, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32531009

ABSTRACT

Two-photon active mitochondriotropic lanthanide nanorods for high resolution fluorescence imaging. The presence of Gd in the nanorods also enabled us to utilize this material as a T1-T2 dual-mode contrast reagent for recording magnetic resonance images of the mouse brain.


Subject(s)
Brain/diagnostic imaging , Lanthanoid Series Elements/chemistry , Magnetic Resonance Imaging , Mitochondria/chemistry , Multimodal Imaging , Nanotubes/chemistry , Animals , Mice , Mice, Inbred C57BL , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...