Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35900346

ABSTRACT

Garden geranium (Pelargonium × hortorum L.H. Bailey, Geraniaceae) is a popular ornamental plant cultivated worldwide, whose extracts are used in cosmetics and medicine (Jugulam et al. 2001). On the University of Electronic Science and Technology of China campus (Chengdu, China), leaf blight on the garden geranium was observed during April-September 2021. The average disease incidence was around 40%-50%, which caused severe loss of ornamental value. Initially, circular, brown necrotic areas appear on the margin of the leaves. In the advanced stage of infection, lesions may enlarge rapidly, become irregular in shape, with the central portion of the lesion falling out and defoliation. To isolate the pathogen, symptomatic tissues obtained from diseased leaves were surface-sterilized for 1 min with 0.3% NaClO, rinsed in sterile distilled water, and plated onto potato dextrose agar (PDA). The inoculated plates were incubated for 7 days at 25°C. Successively, pure cultures were obtained by transferring hyphal tips to new PDA plates. A total of 20 isolates were obtained across 25 garden geranium plants investigated. The colonies on the PDA plates reached a diameter of 60-70 mm after 10 days at 25°C, spreading with a regular margin, aerial mycelium white, and black mycelia on the undersides cottony and solitary and globose pycnidia were produced after ten days. Conidia were either cylindrical or short cylindrical, hyaline 4-11 µm × 2-5 µm. These morphologies corresponded to those of Stagonosporopsis species. Sequence data for the 28S nrDNA, the internal transcribed spacer, ß-tubulin, and RNA polymerase II subunit (White et al. 1990, Liu et al. 1999, Aveskamp et al. 2009) were obtained randomly for one of the pure isolates (P1-L4-1-L1-1), which resulted in the GenBank accession numbers ON667723, ON667722, ON677462, and ON677463, respectively. The RAxML analysis (Stamatakis 2014) of the combined sequence data of the isolate P1-L4-1-L1-1 and the reference sequences obtained from GenBank demonstrated that the isolate P1-L4-1-L1-1 formed a strongly support clade with the type isolates (C5-5) of Stagonosporopsis citrulli M.T. Brewer & J.E. Stewart, which has been found on cucurbits (Stewart et al. 2015). The procedure for Koch's postulates was followed to confirm fungal pathogenicity using 4-day-old mycelial disks. A total of 15 same-aged healthy leaves were divided into three groups, and each group received a different treatment. Artificial wounds were created on one group of leaves using a sterile pin, and a 5-mm mycelial plug of the fungus was placed on the injured tissues. Mycelial plugs were also placed on the surfaces of the sets of unwounded leaves. The remaining leaves were maintained as control and inoculated with sterile PDA plugs. The test was repeated three times. Both the wounded and non-wounded leaves exhibited symptoms after 4-9 days identical to those observed in the field. The control group remained asymptomatic, and the morphology of the fungus reisolated from the inoculated leaves was similar to that of S. citrulli. The phylogeny, together with morphological identification and inoculation results, confirmed the identity of the pathogen on garden geranium as S. citrulli. To our knowledge, this is the first report of leaf spot caused by S. citrulli in the garden geranium in the world. Our results may help to provide crucial information for studying the epidemiology and management of this disease.

2.
Plant Dis ; 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35471075

ABSTRACT

Cluster bean (Cyamopsis tetragonoloba (L.) Taub.) is an important vegetable crop cultivated widely in India. During a field survey in November 2021, about 60% of plants exhibited characteristic powdery mildew disease symptoms and signs in a 15 ha field in Northern Karnataka (Raichur), India. Initially, the symptoms and signs appeared as tan lesions, which later became small, circular and chlorotic. The abaxial surface turned yellow and was covered with white mycelial growth. As the disease progressed, white mycelia grew on the adaxial leaf surface, stems and pods as well. In severe infections, drying and premature defoliation of infected leaves were observed. Infected leaf samples with mycelia were collected (n=8) and the fungus was subjected to morphological and molecular observations. Mycelia on leaves was characterized as epiphytic, amphigenous, producing dense, white patches on the upper and lower leaf surfaces, stem and young pods. Hyphae were hyaline, thin-walled, 1.8 to 4.2 µm wide with erect conidiophores consisting of a cylindrical foot-cell, straight flexuous at the base and measured 20 to 36 × 6 to 9 µm (n=30), followed by 1 to 2 shorter cells. Ellipsoid conidia were produced singly and measured 28 to 42 × 12 to 20 µm (n=30) without fibrosin bodies. Chasmothecia were not observed. A reference specimen was deposited at the Institution of Excellence, University of Mysore Herbarium (UOM-IOE 2022_1). The morphology and other characteristics of conidia were consistent with an Erysiphe species (Braun and Cook 2012). Genomic DNA was isolated from a conidial suspension harvested from the powdery mildew affected cluster bean samples. The ITS region was amplified from three samples using powdery mildew-specific primer pair PN23/PN34 and sequenced directly (Chen et al. 2008). nBLAST analysis revealed that the ITS sequence shared 100% similarity with the reference sequence (E. diffusa vouchers HMJAU02177 - KM260363, BRIP 71013 - MW009058) of Erysiphe diffusa (Cooke & Peck) U. Braun & S. Takam. In addition to 100% match to voucher specimens of E. diffusa, there were no vouchers from other species that also had 100% match. The representative sequences were deposited in GenBank with accession numbers OM669776 - OM669778. Koch's postulates were conducted on healthy cluster bean plants grown under greenhouse conditions. Conidia were harvested from infected leaves, suspended in water and sprayed on 40 to 50-day-old cluster bean plants (28 ± 2°C and >70% relative humidity). The development of powdery mildew symptoms was recorded on 22 plants after 10-14 days of post inoculation. Control plants inoculated with sterile water remained healthy without powdery mildew symptoms. Microscopic observation of spores from inoculated plants confirmed the pathogen as E. diffusa. The genus Erysiphe is known to infect many crop plants. E. diffusa has been reported to infect Vigna radiata, Glycine max and Phaseolus mungo in Australia (Kelly et al. 2021). No reports are available at USDA's host-fungus database for cluster bean and E. diffusa (Farr and Rossman 2022). To the best of our knowledge, this is the first report of E. diffusa associated with powdery mildew of cluster bean in India. Further comprehensive investigations will shed a light on the economic impact of powdery mildew disease on the cluster bean in India.

3.
Plant Dis ; 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33822663

ABSTRACT

The Chinese quince (Pseudocydonia sinensis (Thouin) CK Schneid.) is a tree that is commonly distributed in all regions of South Korea and other Asian countries. The ripened yellow fruit contains medically active compounds (Hamauzu et al. 2005). It has been consumed as tea and candies and used in traditional medicine for treating asthma, cough, influenza, harsh throat, and tuberculosis and for liver protection (Chun et al. 2012). In the Kyungpook National University campus (Daegu, South Korea), fruit canker on the Chinese quince was ubiquitously observed during May-August 2020. The average disease incidence was around 30%-40%, which caused significant yield loss. Initially, minute, brown-to-rust-colored, unbroken, circular, necrotic areas appear, and in the advanced stage of infection, the epidermis tears open and tube- or aecia-like white structures are formed. Successively, the affected areas become necrotic and gradually enlarge to reach 3-5 cm in diameter. To isolate the causative pathogen, symptomatic tissues obtained from diseased fruits were surface-sterilized for 1 min with 70% ethanol, rinsed in sterile distilled water, and plated onto potato dextrose agar (PDA). The inoculated plates were incubated for 7 days at 25°C. Successively, pure cultures were obtained by transferring hyphal tips to new PDA plates. A total of 15 isolates were obtained across 20 fruit trees investigated. The colonies on the PDA plates reached a diameter of 60-70 mm after 7 days at 25°C, spreading with a regular margin, aerial mycelium covering the entire colony, compact, white to pale gray in color, and solitary and globose pycnidia were produced after ten days. Conidiogenous cells were phialidic, hyaline, simple, smooth, doliiform to ampulliform, 3-5 × 3-4 µm; conidia were subglobose to oval or obtuse, thin-walled, smooth, aseptate, minute guttules, brown, 5.5-8 × 4-7 µm. These morphologies corresponded to those of phoma-like species. Sequence data for the 28S nrDNA, the internal transcribed spacer, ß-tubulin, and RNA polymerase II subunit (White et al. 1990, Liu et al. 1999, Aveskamp et al. 2009) were obtained randomly for one of the pure isolates (EAH 2), which resulted in the GenBank accession numbers MW325675, MW325676, MW330391, and MW330390, respectively. The RAxML analysis (Stamatakis 2014) was run on the CIPRES Science Gateway portal of the combined sequence data of the isolate EAH 2 and the reference sequences obtained from GenBank. Analyses for the combined datasets were conducted with RAxML-HPC2 on XSEDE v. 8.2.10 using a GTR+GAMMA substitution model with 1000 bootstrap iterations. Results demonstrated that the isolate EAH2 formed a strongly support clade with the type isolates of Nothophoma quercina (Syd.) Q. Chen & L. Cai (basionym: Ampelomyces quercinus), which has been found on Quercus sp. in Ukraine (Chen et al. 2015). The procedure for Koch's postulates was followed to confirm fungal pathogenicity using 3-day-old mycelial disks. A total of 15 same-aged healthy fruits were divided into three groups, and each group received a different treatment. Artificial wounds were created on one group of fruits using a sterile pin, and a 5-mm mycelial plug of the fungus was placed on the injured tissues. Mycelial plugs were also placed on the surfaces of the sets of unwounded fruits. The remaining fruits were maintained as control and inoculated with sterile PDA plugs. The test was repeated three times. The wounded fruits exhibited symptoms after 8-10 identical to those observed in the field. The control group remained asymptomatic, and the morphology of the fungus reisolated from the inoculated fruits was similar to that of N. quercina. The phylogeny, together with morphological identification and inoculation results, confirmed the identity of the fungus as N. quercina (Chen et al. 2015). A previous study had also reported shoot canker caused by N. quercina in the Chinese quince (Yun and Oh 2016). However, to our knowledge, this is the first report of fruit canker caused by N. quercina in the Chinese quince.

4.
Plant Dis ; 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33206017

ABSTRACT

Chinese quince (Pseudocydonia sinensis (Thouin) CK Schneid.), a deciduous tree in the family Rosaceae, is native to China, Japan, and South Korea; the fruit is known as mogwa in South Korea. The ripened yellow fruit has been used as a traditional therapeutic for respiratory ailments and as an additive in health products such as syrups, tea, and candies (Sawai et al. 2008). From May to August 2020, Chinese quince trees showing symptoms of brown spots were observed on the Kyungpook National University premises, Daegu, South Korea, with an incidence of 30%-40%. The disease first appeared as small, round, yellow specks on the fruits, which necrotized over time and gradually enlarged to 0.7-2.7 cm in diameter. To isolate the pathogen, symptomatic tissues obtained from disease fruit were surface sterilized for 1 min with 70% ethanol, rinsed in sterile distilled water, and plated onto potato dextrose agar (PDA). The inoculated plates were incubated at 25°C for 7 days. Successively, pure cultures were obtained by transferring hyphal tips to new PDA plates. Twenty isolates were obtained from 25 fruit. Colonies on PDA reached a diameter of 30-40 mm. After incubation for 7 days at 25°C, spreading with an even, colorless-to-buff glabrous margin, a submarginal ring of conidiomata developed from day 5 to 12 and was visible as scattered dots on either side of the plate. Conidiogenous cells were discrete (3.5-6 × 3.5-5 µm); conidia were ellipsoid to short-cylindrical [3-5 × 2.1-3.5 µm (n = 60)] and olivaceous in color. These conidial dimensions corresponded to those of Didymosphaeria rubi-ulmifolii Ariyaw., Camporesi & K.D. Hyde (basionym: Paraconiothyrium brasiliense), which has been found on Rubus ulmifolius in Italy (Ariyawansa et al. 2014). Sequence data for the rDNA internal transcribed spacer (ITS), large subunit ribosomal RNA (LSU), and partial translation elongation factor 1-α (TEF) (White et al. 1990, Rehner and Buckley 2005) were obtained for one of the pure culture isolate (BT1) with GenBank accession numbers MW020087, MW020060 and MW027220, respectively. The sequences of BT1 isolate using a BLASTn analysis showed 100% identity with the ex-type MFLUCC 14-0023 of D. rubi-ulmifolii in ITS, and LSU portions (accession nos. MT310602, and MT214555, respectively) and 99% identity in TEF portion (accession no. MT394734). The procedure for Koch's postulates was followed to confirm fungal pathogenicity using 3-day-old mycelial discs. Fifteen healthy fruit were divided into three groups of five fruit each, with each group receiving a different treatment. One group of fruit was wounded by puncturing with a sterile pin and inoculated using 5-mm agar discs with mycelium on the wounds. Mycelium covered agar discs were also placed on the surfaces of five unwounded fruits. The remaining five fruit were maintained as a control and inoculated with sterile PDA plugs. The pathogenicity test was replicated thrice. The wounded fruits showed symptoms similar to those observed in the field. The control group remained asymptomatic and the morphology of the fungus re-isolated from the inoculated fruit was the same as that of D. rubi-ulmifolii. The phylogeny, together with the morphological identification and inoculation results, confirmed the identity of the fungus as D. rubi-ulmifolii (Ariyawansa et al. 2014). To the best of our knowledge, this is the first report of D. rubi-ulmifolii causing brown spot in Chinese quince.

SELECTION OF CITATIONS
SEARCH DETAIL
...