Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 366: 121722, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38991346

ABSTRACT

The breeding of livestock raises substantial environmental concerns, especially the efficient management of nutrients and pollution. This research is designed to assess the potency of char and modified char in diluting nutrient concentrations in livestock wastewater. The characteristics of graphene oxide, struvite, and calcium-modified char were inspected, defining their efficacy in both batch and bed-column investigations of nutrient sorption. Various factors, including sorption capacity, time of contact, ion levels, a decrease in ion levels over time, and sorption kinetics, have been considered, along with their appropriateness for respective models. The first evaluation of the options concluded that 600 °C char was better since it exhibited higher removal efficiency. Modified char sorption data at 600 °C was used to adjust the models "PSOM, Langmuir", and "Thomas". The models were applied to both batch and bed-column experiments. The maximum phosphate sorption was 110.8 mg/g, 85.73 mg/g, and 82.46 mg/g for B-GO, B-S, and B-C modified chars respectively, in the batch experiments. The highest phosphate sorption in column experiments, at a flow rate of 400 µl/min, was 51.23 mg per 10 g of sorbent. This corresponds to a sorption rate of 5.123 mg/g. B-GO and B-S modified chars showed higher sorption capacities; this was observed in both the batch and bed-column studies. This displayed the capability of graphene oxide and struvite-modified chars for efficient ion and nutrient uptake, whether in single or multi-ion environments, making them a very good candidate for nutrient filtration in livestock wastewater treatment. Additionally, B-GO char enhanced the sorption of phosphate, resulting in augmented seed germination and seedling growth. These results reveal that B-GO char can be used as a possible substitute for chemical fertilizers.

SELECTION OF CITATIONS
SEARCH DETAIL
...