Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-17703431

ABSTRACT

This study focused on the regulation and affinity modulation of angiotensin II (Ang II) binding to its receptor subtypes (AT(1)- and AT(2)-receptor) in the coronary endothelium (CE) and cardiomyocytes (CM) of Sprague-Dawley male rats in normal (N), normal treated with losartan (NL), streptozotocin-induced diabetic (D), insulin-treated diabetic (DI), losartan-treated diabetic (DL), and diabetic co-treated with insulin and losartan (DIL). Heart perfusion was used to estimate Ang II binding affinity (tau=1/k-(n)) to its receptor subtypes on CE and CM. Diabetes decreased tau value on CE and increased it on CM as compared to normal. In DL group, the tau value decreased on CE but was normalised on CM. Insulin treatment alone (DI) or with losartan (DIL) restored t to normal on both CE and CM. Western blot results for AT(1)-receptor density showed an increase in diabetics compared to normal with no normalising effect with insulin treatment. The AT(1)-receptor density was normalised in the diabetic groups treated with losartan +/- insulin. Results for AT(2)-receptor regulation revealed a significant difference between untreated (D) and losartan-treated (DL, DIL) diabetic groups. All of these data show the interrelated pathway and cross-talk between insulin and Ang II system indicating potentially negative effects on the diabetic heart.


Subject(s)
Angiotensin II/metabolism , Diabetes Mellitus, Experimental/physiopathology , Heart/physiopathology , Insulin/metabolism , Losartan/therapeutic use , Myocardial Infarction/prevention & control , Receptor Cross-Talk/physiology , Animals , Anti-Arrhythmia Agents/therapeutic use , Blood Glucose/drug effects , Blood Glucose/metabolism , Body Weight/drug effects , Diabetes Mellitus, Experimental/drug therapy , Heart/anatomy & histology , Insulin/therapeutic use , Organ Size/drug effects , Rats , Receptor, Insulin/physiology , Receptors, Angiotensin/physiology , Reference Values
2.
Can J Physiol Pharmacol ; 85(2): 215-24, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17487263

ABSTRACT

This project assesses the treatment role with insulin and (or) angiotensin II receptor subtype-1 (AT1-R) blocker (ARB) on insulin receptor and endothelin-1 receptor subtype (ETA-R and ETB-R) regulation in rat hearts suffering from insulin-dependent diabetes mellitus (IDDM). Animals were divided into 6 groups: groups 1, 3, and 5 were controls consisting of normal, diabetic (streptozotocin-treated, once at 0 time), and diabetic supplemented daily with insulin, respectively, whereas groups 2, 4, and 6 were the controls treated daily with losartan. One month after enrollment, rats were sacrificed and samples of cardiac tissue were snapped frozen for immunostaining and Western blotting. Insulin receptor density was observed to be upregulated in the cardiomyocytes of diabetic animals, but downregulated with insulin supplementation alone. Cotreatment with insulin and an ARB resulted in drastic increase in insulin-receptor density in the diabetic rats. In addition, expression of ETA-R in cardiomyocytes was upregulated and was consistently maintained within the various treatment modalities. However, ETB-R expression was significantly reduced in the diabetic group treated with both insulin and an ARB. The changes in the expression of the insulin, the ETA-Rs, and the ETB-Rs at the various sites of the myocardium and the effect of both insulin treatment and blockade of the AT1-R explain the new benefits related to the halting of myocardial remodeling in IDDM rats.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Myocardium/chemistry , Receptor, Endothelin A/analysis , Receptor, Endothelin B/analysis , Receptor, Insulin/analysis , Animals , Blotting, Western , Endothelin-1/metabolism , Fluorescent Antibody Technique , Losartan/pharmacology , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...