Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 13(32): 9225-9231, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36092997

ABSTRACT

Herein, we report that short peptides are capable of exploiting their anti-parallel registry to access cross-ß stacks to expose more than one catalytic residue, exhibiting the traits of advanced binding pockets of enzymes. Binding pockets decorated with more than one catalytic residue facilitate substrate binding and process kinetically unfavourable chemical transformations. The solvent-exposed guanidinium and imidazole moieties on the cross-ß microphases synergistically bind to polarise and hydrolyse diverse kinetically stable model substrates of nucleases and phosphatase. Mutation of either histidine or arginine results in a drastic decline in the rate of hydrolysis. These results not only support the argument of short amyloid peptides as the earliest protein folds but also suggest their interactions with nucleic acid congeners, foreshadowing the mutualistic biopolymer relationships that fueled the chemical emergence of life.

2.
J Am Chem Soc ; 144(2): 673-678, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34990140

ABSTRACT

The development of synthetic nonequilibrium systems has gathered increasing attention due to their potential to illustrate the dynamic, complex, and emergent traits of biological systems. Simple building blocks capable of interacting via dynamic covalent chemistry and physical assembly in a reaction network under nonequilibrium conditions can contribute to our understanding of complex systems of life and its origin. Herein, we have demonstrated the nonequilibrium generation of catalytic supramolecular assemblies from simple heterocycle melamine driven by a thermodynamically activated ester. Utilizing a reversible covalent linkage, an imidazole moiety was recruited by the assemblies to access a catalytic transient state that dissipated energy via accelerated hydrolysis of the activated ester. The nonequilibrium assemblies were further capable of temporally binding to a hydrophobic guest to modulate its photophysical properties. Notably, the presence of an exogenous aromatic base augmented the lifetime of the catalytic microphases, reflecting their higher kinetic stability.

3.
Angew Chem Int Ed Engl ; 60(1): 202-207, 2021 01 04.
Article in English | MEDLINE | ID: mdl-32956553

ABSTRACT

Biocatalytic reaction networks integrate complex cascade transformations via spatial localization of multiple enzymes confined within the cellular milieu. Inspired by nature's ingenuity, we demonstrate that short peptide-based cross-ß amyloid nanotubular hybrids can promote different kinds of cascade reactions, from simple two-step, to multistep, to complex convergent cascades. The compartmentalizing ability of paracrystalline cross-ß phases was utilized to colocalize sarcosine oxidase (SOX) and hemin as an artificial peroxidase. Further, the catalytic potential of the amyloid nanotubes with ordered arrays of imidazoles were used as hydrolase mimic. The SOX-hemin amyloid nanohybrids featuring a single extant enzyme could integrate different logic networks to access complex digital designs with the help of three concatenated AND gates and biologically relevant stimuli as inputs.


Subject(s)
Amyloid beta-Peptides/metabolism , Nanotubes/chemistry , Catalysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...