Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Arch Microbiol ; 206(7): 302, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874634

ABSTRACT

Host-generated antimicrobial peptides (AMPs) play a pivotal role in defense against bacterial pathogens. AMPs kill invading bacteria majorly by disrupting the bacterial cell walls. AMPs are actively synthesized and released into the lumen of the gastrointestinal tract to limit colonization of enteric pathogens like Salmonella typhimurium (S. typhimurium). However, S. typhimurium has evolved several resistance mechanisms to defend AMPs. The multicomponent SapABCDF uptake transporter is one such system that helps in resisting AMPs. In the current study, we analyzed the role of S. typhimurium SapA against stress survival and virulence of this bacterium. ∆sapA mutant strain showed hypersensitivity to AMPs, like melittin and mastoparan. Further, ∆sapA mutant showed more than 22 folds (p = 0.019) hypersensitivity to neutrophils as compared to the WT strain of S. typhimurium. In addition, ∆sapA strain showed defective survival in mice. In conclusion, the results of the current study suggest that the SapA is essential for survival against AMPs and virulence of S. typhimurium.


Subject(s)
Neutrophils , Salmonella typhimurium , Animals , Salmonella typhimurium/drug effects , Salmonella typhimurium/pathogenicity , Salmonella typhimurium/genetics , Mice , Neutrophils/immunology , Neutrophils/microbiology , Virulence , Antimicrobial Peptides/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Female , Mice, Inbred BALB C , Salmonella Infections/microbiology , Antimicrobial Cationic Peptides/pharmacology
2.
Arch Microbiol ; 206(3): 126, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411730

ABSTRACT

Glyoxylate shunt is an important pathway for microorganisms to survive under multiple stresses. One of its enzymes, malate synthase (encoded by aceB gene), has been widely speculated for its contribution to both the pathogenesis and virulence of various microorganisms. We have previously demonstrated that malate synthase (MS) is required for the growth of Salmonella Typhimurium (S. Typhimurium) under carbon starvation and survival under oxidative stress conditions. The aceB gene is encoded by the acetate operon in S. Typhimurium. We attempted to study the activity of acetate promoter under both the starvation and oxidative stress conditions in a heterologous system. The lac promoter of the pUC19 plasmid was substituted with the putative promoter sequence of the acetate operon of S. Typhimurium upstream to the lacZ gene and transformed the vector construct into E. coli NEBα cells. The transformed cells were subjected to the stress conditions mentioned above. We observed a fourfold increase in the ß-galactosidase activity in these cells resulting from the upregulation of the lacZ gene in the stationary phase of cell growth (nutrient deprived) as compared to the mid-log phase. Following exposure of stationary phase cells to hypochlorite-induced oxidative stress, we further observed a 1.6-fold increase in ß galactosidase activity. These data suggest the induction of promoter activity of the acetate operon under carbon starvation and oxidative stress conditions. Thus, these observations corroborate our previous findings regarding the upregulation of aceB expression under stressful environments.


Subject(s)
Escherichia coli , Salmonella typhimurium , Salmonella typhimurium/genetics , Malate Synthase , Operon , Oxidative Stress/genetics , Acetates , Carbon , Nutrients
3.
Free Radic Biol Med ; 213: 322-326, 2024 03.
Article in English | MEDLINE | ID: mdl-38262547

ABSTRACT

Sulphur containing amino acids, methionine and cysteine are highly prone to oxidation. Reduction of oxidized methionine (Met-SO) residues to methionine (Met) by methionine sulfoxide reductases (Msrs) enhances the survival of bacterial pathogens under oxidative stress conditions. S. Typhimurium encodes two types (cytoplasmic and periplasmic) of Msrs. Periplasmic proteins, due to their location are highly vulnerable to host-generated oxidants. Therefore, the periplasmic Msr (MsrP) mediated repair (as compared to the cytoplasmic counterpart) might play a more imperative role in defending host-generated oxidants. Contrary to this, we show that in comparison to the ΔmsrP strain, the mutant strains in the cytoplasmic Msrs (ΔmsrA and ΔmsrAC strains) showed many folds more susceptibility to chloramine-T and neutrophils. Further ΔmsrA and ΔmsrAC strains accumulated higher levels of ROS and showed compromised fitness in mice spleen and liver. Our data suggest the pivotal role of cytoplasmic Msrs in oxidative stress survival of S. Typhimurium.


Subject(s)
Oxidative Stress , Salmonella typhimurium , Animals , Mice , Salmonella typhimurium/genetics , Virulence , Methionine Sulfoxide Reductases/genetics , Methionine Sulfoxide Reductases/metabolism , Oxidation-Reduction , Oxidants , Methionine/metabolism , Racemethionine/metabolism
4.
Sci Rep ; 13(1): 21852, 2023 12 09.
Article in English | MEDLINE | ID: mdl-38071209

ABSTRACT

Salmonella encounters but survives host inflammatory response. To defend host-generated oxidants, Salmonella encodes primary antioxidants and protein repair enzymes. Methionine (Met) residues are highly prone to oxidation and convert into methionine sulfoxide (Met-SO) which compromises protein functions and subsequently cellular survival. However, by reducing Met-SO to Met, methionine sulfoxide reductases (Msrs) enhance cellular survival under stress conditions. Salmonella encodes five Msrs which are specific for particular Met-SO (free/protein bound), and 'R'/'S' types. Earlier studies assessed the effect of deletions of one or two msrs on the stress physiology of S. Typhimurium. We generated a pan msr gene deletion (Δ5msr) strain in S. Typhimurium. The Δ5msr mutant strain shows an initial lag in in vitro growth. However, the Δ5msr mutant strain depicts very high sensitivity (p < 0.0001) to hypochlorous acid (HOCl), chloramine T (ChT) and superoxide-generating oxidant paraquat. Further, the Δ5msr mutant strain shows high levels of malondialdehyde (MDA), protein carbonyls, and protein aggregation. On the other side, the Δ5msr mutant strain exhibits lower levels of free amines. Further, the Δ5msr mutant strain is highly susceptible to neutrophils and shows defective fitness in the spleen and liver of mice. The results of the current study suggest that the deletions of all msrs render S. Typhimurium highly prone to oxidative stress and attenuate its virulence.


Subject(s)
Methionine Sulfoxide Reductases , Oxidative Stress , Salmonella typhimurium , Animals , Mice , Antioxidants/metabolism , Methionine Sulfoxide Reductases/genetics , Methionine Sulfoxide Reductases/metabolism , Oxidants , Salmonella typhimurium/genetics , Virulence/genetics
5.
FEMS Microbiol Lett ; 3702023 01 17.
Article in English | MEDLINE | ID: mdl-37403401

ABSTRACT

Among others, methionine residues are highly susceptible to host-generated oxidants. Repair of oxidized methionine (Met-SO) residues to methionine (Met) by methionine sulfoxide reductases (Msrs) play a chief role in stress survival of bacterial pathogens, including Salmonella Typhimurium. Periplasmic proteins, involved in many important cellular functions, are highly susceptible to host-generated oxidants. According to location in cell, two types of Msrs, cytoplasmic and periplasmic are present in S. Typhimurium. Owing to its localization, periplasmic Msr (MsrP) might play a crucial role in defending the host-generated oxidants. Here, we have assessed the role of MsrP in combating oxidative stress and colonization of S. Typhimurium. ΔmsrP (mutant strain) grew normally in in-vitro media. In comparison to S. Typhimurium (wild type), mutant strain showed mild hypersensitivity to HOCl and chloramine-T (ChT). Following exposure to HOCl, mutant strain showed almost similar protein carbonyl levels (a marker of protein oxidation) as compared to S. Typhimurium strain. Additionally, ΔmsrP strain showed higher susceptibility to neutrophils than the parent strain. Further, the mutant strain showed very mild defects in survival in mice spleen and liver as compared to wild-type strain. In a nutshell, our results indicate that MsrP plays only a secondary role in combating oxidative stress and colonization of S. Typhimurium.


Subject(s)
Methionine Sulfoxide Reductases , Salmonella typhimurium , Animals , Mice , Methionine Sulfoxide Reductases/genetics , Methionine Sulfoxide Reductases/metabolism , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Virulence , Oxidants , Oxidative Stress , Methionine/metabolism , Racemethionine/metabolism , Oxidation-Reduction
6.
Sci Rep ; 12(1): 15979, 2022 09 25.
Article in English | MEDLINE | ID: mdl-36155623

ABSTRACT

To survive and replicate in the host, S. Typhimurium have evolved several metabolic pathways. The glyoxylate shunt is one such pathway that can utilize acetate for the synthesis of glucose and other biomolecules. This pathway is a bypass of the TCA cycle in which CO2 generating steps are omitted. Two enzymes involved in the glyoxylate cycle are isocitrate lyase (ICL) and malate synthase (MS). We determined the contribution of MS in the survival of S. Typhimurium under carbon limiting and oxidative stress conditions. The ms gene deletion strain (∆ms strain) grew normally in LB media but failed to grow in M9 minimal media supplemented with acetate as a sole carbon source. However, the ∆ms strain showed hypersensitivity (p < 0.05) to hypochlorite. Further, ∆ms strain has been significantly more susceptible to neutrophils. Interestingly, several folds induction of ms gene was observed following incubation of S. Typhimurium with neutrophils. Further, ∆ms strain showed defective colonization in poultry spleen and liver. In short, our data demonstrate that the MS contributes to the virulence of S. Typhimurium by aiding its survival under carbon starvation and oxidative stress conditions.


Subject(s)
Isocitrate Lyase , Malate Synthase , Acetates/metabolism , Carbon/metabolism , Carbon Dioxide , Glucose , Glyoxylates/metabolism , Hypochlorous Acid , Isocitrate Lyase/genetics , Isocitrate Lyase/metabolism , Malate Synthase/genetics , Malate Synthase/metabolism , Nutrients , Oxidative Stress , Salmonella typhimurium/metabolism
7.
Sci Rep ; 11(1): 17214, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34446765

ABSTRACT

Salmonella enterica serovar Gallinarum is a host-restricted bacterial pathogen that causes a serious systemic disease exclusively in birds of all ages. Salmonella enterica serovar Typhimurium is a host-generalist serovar. Dendritic cells (DCs) are key antigen-presenting cells that play an important part in Salmonella host-restriction. We evaluated the differential response of chicken blood monocyte-derived dendritic cells (chMoDCs) exposed to S. Gallinarum or S. Typhimurium. S. Typhimurium was found to be more invasive while S. Gallinarum was more cytotoxic at the early phase of infection and later showed higher resistance against chMoDCs killing. S. Typhimurium promoted relatively higher upregulation of costimulatory and other immune function genes on chMoDCs in comparison to S. Gallinarum during early phase of infection (6 h) as analyzed by real-time PCR. Both Salmonella serovars strongly upregulated the proinflammatory transcripts, however, quantum was relatively narrower with S. Gallinarum. S. Typhimurium-infected chMoDCs promoted relatively higher proliferation of naïve T-cells in comparison to S. Gallinarum as assessed by mixed lymphocyte reaction. Our findings indicated that host restriction of S. Gallinarum to chicken is linked with its profound ability to interfere the DCs function. Present findings provide a valuable roadmap for future work aimed at improved vaccine strategies against this pathogen.


Subject(s)
Dendritic Cells/immunology , Monocytes/immunology , Salmonella typhimurium/immunology , Salmonella/immunology , Animals , B7-1 Antigen/genetics , B7-1 Antigen/immunology , CD40 Antigens/genetics , CD40 Antigens/immunology , Chickens , Cytokines/genetics , Cytokines/immunology , Cytotoxicity, Immunologic/immunology , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Gene Expression/immunology , Host-Pathogen Interactions/immunology , Microbial Viability/immunology , Monocytes/cytology , Salmonella/physiology , Salmonella typhimurium/physiology , Species Specificity , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology
8.
Andrology ; 9(6): 1943-1957, 2021 11.
Article in English | MEDLINE | ID: mdl-34245495

ABSTRACT

BACKGROUND: The excessive reactive oxygen species produced during semen-freezing and -thawing damage the macromolecules resulting in impairment of cellular functions. Proteins are the primary targets of oxidative damage, wherein methionine residues are more prone to oxidation and get converted into methionine sulfoxide, thus affecting the protein function. The methionine sulfoxide reductase A (MsrA) catalyzes the conversion of methionine sulfoxide to methionine and restores the functionality of defective proteins. OBJECTIVES: To establish the expression of MsrA in male reproductive organs, including semen and its effect on quality of cryopreserved semen upon exogenous supplementation, taking buffalo semen as a model. MATERIALS AND METHODS: The expression of MsrA was established by immunohistochemistry, PCR, and Western blots. Further, the effect of recombinant MsrA (rMsrA) supplementation on the quality of cryopreserved spermatozoa was assessed in three treatment groups containing 1.0, 1.5, and 2.0 µg of rMsrA/50 million spermatozoa in egg yolk glycerol extender along with a control group; wherein the post-thaw progressive motility, viability, membrane integrity, and zona binding ability of cryopreserved spermatozoa were studied. RESULTS: The MsrA was expressed in buffalo testis, epididymis, accessory sex glands, and spermatozoa except in seminal plasma. In group 2, the supplementation has resulted in a significant (p < 0.05) improvement as compared to the control group in mean progressive motility (47.50 ± 2.50 vs. 36.25 ± 2.63), viability (56.47 ± 1.85 vs. 48.05 ± 2.42), HOST (50.76 ± 1.73 vs. 44.29 ± 1.29), and zona binding ability of spermatozoa (149.50 ± 8.39 vs. 29.50 ± 2.85). DISCUSSION AND CONCLUSION: In the absence of native MsrA of seminal plasma, the supplementations of rMsrA may repair the oxidatively damaged seminal plasma proteins and exposed sperm plasma membrane proteins resulting in better quality with a fivefold increase in fertilizability of frozen-thawed spermatozoa. The findings can be extended to other species to improve the semen quality with the variation in the amounts of rMsrA supplementation.


Subject(s)
Cryopreservation , Cryoprotective Agents/administration & dosage , Fertilization , Methionine Sulfoxide Reductases/administration & dosage , Spermatozoa/drug effects , Animals , Buffaloes , Cryoprotective Agents/metabolism , Dietary Supplements , Male , Methionine Sulfoxide Reductases/metabolism , Models, Animal , Oxidative Stress/drug effects , Semen , Semen Analysis , Semen Preservation
9.
Mol Biol Rep ; 48(4): 3195-3203, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33954903

ABSTRACT

Salmonella Typhimurium survives and replicates inside the oxidative environment of phagocytic cells. Proteins, because of their composition and location, are the foremost targets of host inflammatory response. Among others, Met-residues are highly prone to oxidation. Methionine sulfoxide reductase (Msr), with the help of thioredoxin-thioredoxin reductase, can repair oxidized methionine (Met-SO) residues to Met. There are four methionine sulfoxide reductases localized in the cytosol of S. Typhimurium, MsrA, MsrB, MsrC and BisC. MsrA repairs both protein-bound and free 'S' Met-SO, MsrB repairs protein-bound 'R' Met-SO, MsrC repairs free 'R' Met-SO and BisC repairs free 'S' Met-SO. To assess the role(s) of various Msrs in Salmonella, few studies have been conducted by utilizing ΔmsrA, ΔmsrB, ΔmsrC, ΔmsrAΔmsrB, ΔmsrBΔmsrC and ΔbisC mutant strains of S. Typhimurium. Out of the above-mentioned mutants, ΔmsrA and ΔmsrC were found to play important role in the stress survival of this bacterium; however, the combined roles of these two genes have not been determined. In the current study, we have generated msrAmsrC double gene deletion strain (ΔmsrAΔmsrC) of S. Typhimurium and evaluated the effect of gene deletions on the survival of Salmonella against hypochlorite stress and intramacrophage replication. In in vitro growth curve analysis, ΔmsrAΔmsrC mutant strain showed a longer lag phase during the initial stages of the growth; however, it attained similar growth as the wild type strain of S. Typhimurium after 5 h. The ΔmsrAΔmsrC mutant strain has been highly (~ 3000 folds more) sensitive (p < 0.001) to hypochlorite stress. Further, ΔmsrA and ΔmsrAΔmsrC mutant strains showed more than 8 and 26 folds more susceptibility to poultry macrophages, respectively. Our data suggest that the deletion of both msrA and msrC genes severely affect the oxidative stress survival and intramacrophage proliferation of S. Typhimurium.


Subject(s)
Methionine Sulfoxide Reductases/genetics , Salmonella typhimurium/genetics , Animals , Gene Deletion , Genes, Bacterial , Hypochlorous Acid/pharmacology , In Vitro Techniques , Macrophages/immunology , Macrophages/microbiology , Oxidative Stress/drug effects , Poultry , Salmonella typhimurium/drug effects
10.
Protein Pept Lett ; 28(1): 11-17, 2021.
Article in English | MEDLINE | ID: mdl-32586239

ABSTRACT

BACKGROUND: The increase in reactive oxygen species (ROS) production during cryopreservation of semen, leads to oxidation of biomolecules affecting the functionality of spermatozoa. Methionine residues in proteins are highly prone to oxidation and get converted into methionine sulfoxide (MetO). Methionine sulfoxide reductase A (MsrA) can improve the functionality of spermatozoa by reducing the MetO to methionine restoring the lost functionality of the affected proteins. OBJECTIVE: The expression of catalytically active recombinant MsrA (rMsrA). METHODS: The msrA gene was PCR amplified, cloned and sequenced. Further, the recombinant clone was used for protein expression and purification. The protein was getting precipitated during dialysis in Tris-buffer. Hence, the purified rMsrA was dialyzed at 4°C against the Tris-buffer pH 7.5 containing MgCl2, KCl, NaCl, urea and triton X-100. During dialysis, changes of buffer were done at every 12 h interval with stepwise reduction in the concentrations of NaCl, urea and triton X-100. The final dialysis was done with buffer containing 10 mM MgCl2, 30 mM KCl, and 150 mM NaCl, 25 mM Tris-HCl pH 7.5. The activity of the rMsrA was checked spectrophotometrically. RESULTS: The protein BLAST of buffalo MsrA with bovine sequence showed 14 amino acid mismatches. The rMsrA has been purified under denaturing conditions as it was forming inclusion bodies consistently during protein expression. After renaturation, the purified 33 kDa rMsrA was catalytically active by biochemical assay. CONCLUSION: The rMsrA expressed in prokaryotic system is catalytically active and can be used for supplementation to semen extender to repair the oxidatively damaged seminal plasma proteins that occur during cryopreservation.


Subject(s)
Cloning, Molecular , Gene Expression , Methionine Sulfoxide Reductases , Animals , Cattle , Male , Methionine Sulfoxide Reductases/biosynthesis , Methionine Sulfoxide Reductases/chemistry , Methionine Sulfoxide Reductases/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
11.
ACS Infect Dis ; 6(7): 1928-1939, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32492342

ABSTRACT

Peptide methionine sulfoxide reductases (Msrs) are enzymes that repair ROS-damage to sulfur-containing amino acids such as methionine, ensuring functional integrity of cellular proteins. Here we have shown that unlike the majority of pro- and eukaryotic Msrs, the peptide methionine sulfoxide reductase (MsrAB) from the human pathobiont Haemophilus influenzae (Hi) is required for the repair of hypochlorite damage to cell envelope proteins, but more importantly, we were able to demonstrate that MsrAB plays a role in modulating the host immune response to Hi infection. Loss of MsrAB resulted in >1000-fold increase in sensitivity of Hi to HOCl-mediated killing, and also reduced biofilm formation and in-biofilm survival. Expression of msrAB was also induced by hydrogen peroxide and paraquat, but a Hi2019ΔmsrAB strain was not susceptible to killing by these ROS in vitro. Hi2019ΔmsrAB fitness in infection models was low, with a 3-fold reduction in intracellular survival in bronchial epithelial cells, increased susceptibility to neutrophil killing, and a 10-fold reduction in survival in a mouse model of lung infection. Interestingly, infection with Hi2019ΔmsrAB led to specific changes in the antibacterial response of human host cells, with genes encoding antimicrobial peptides (BPI, CAMP) upregulated between 4 and 9 fold compared to infection with Hi2019WT, and reduction in expression of two proteins with antiapoptotic functions (BIRC3, XIAP). Modulation of host immune responses is a novel role for an enzyme of this type and provides first insights into mechanisms by which MsrAB supports Hi survival in vivo.


Subject(s)
Haemophilus influenzae , Methionine Sulfoxide Reductases , Hydrogen Peroxide , Immunity , Methionine Sulfoxide Reductases/genetics
12.
Mol Biol Rep ; 47(3): 2231-2242, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32076998

ABSTRACT

The human gut pathogen, Salmonella Typhimurium (S. Typhimurium) not only survives but also replicates inside the phagocytic cells. Bacterial proteins are the primary targets of phagocyte generated oxidants. Because of the different amino acid composition, some proteins are more prone to oxidation than others. Many oxidant induced modifications to amino acids have been described. Introduction of carbonyl group is one of such modifications, which takes place quite early following exposure of proteins to oxidants and is quite stable. Therefore, carbonyl groups can be exploited to identify oxidant susceptible proteins. Hypochlorous acid (HOCl) is one of the most potent oxidants produced by phagocytes. Incubation of S. Typhimurium with 3 mM HOCl resulted in more than 150 folds loss of bacterial viability. Proteins extracted from HOCl exposed S. Typhimurium cells showed about 60 folds (p < 0.001) more carbonyl levels as compared to unexposed cells. Similarly, 2, 4-Dinitrophenylhydrazine (2, 4-DNPH) derivatized proteins of HOCl treated S. Typhimurium cultures reacted strongly with anti-DNP antibodies as compared to buffer treated counterpart. Next, we have derivatized carbonyl groups on the proteins with biotin hydrazide. The derivatized proteins were then isolated by avidin affinity chromatography. Mass spectrometry based analysis revealed the presence of 204 proteins.


Subject(s)
Bacterial Proteins/metabolism , Oxidants/metabolism , Oxidation-Reduction , Salmonella typhimurium/metabolism , Bacterial Proteins/genetics , Dose-Response Relationship, Drug , Humans , Hypochlorous Acid/pharmacology , Microbial Viability/drug effects , Salmonella Infections/microbiology , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics
13.
Curr Microbiol ; 77(5): 695-701, 2020 May.
Article in English | MEDLINE | ID: mdl-31263924

ABSTRACT

Protein L-isoaspartate-O-methyltransferase (PIMT) plays an important role in restoration of covalently damaged Asn/Asp residues. It repairs the racemized forms of these amino acids in protein by forming a labile isoAsp methyl ester which readily converts back to the succinimide intermediate. Spontaneous hydrolysis of the intermediate further restores a minor portion to the normal Asp residues. While significant numbers of PIMT targets have been identified in eukaryotes, very few are documented from prokaryotes. Temperature (42 °C) induced elevation in PIMT expression level has been recently shown in a poultry isolate of Salmonella Typhimurium (ST). The enzyme was also found to be crucial for survival, virulence and colonization of ST in poultry. In the present study, co-immunoprecipitation (Co-IP) approach was used (for isolation) followed by LC-MS analysis to identify the PIMT interacting proteins of ST. Four different proteins were identified among which cytochrome C biogenesis protein A (CcmA) was further expressed in recombinant form and analysed for interaction with recombinant PIMT (rPIMT) by microtiter plate assay. Additionally, the findings were supported by alterations in secondary structure of the proteins upon co-incubation.


Subject(s)
Bacterial Proteins/metabolism , Protein D-Aspartate-L-Isoaspartate Methyltransferase/metabolism , Salmonella typhimurium/enzymology , Bacterial Proteins/genetics , Immunoprecipitation , Protein D-Aspartate-L-Isoaspartate Methyltransferase/genetics , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Salmonella typhimurium/genetics
14.
Pathog Dis ; 77(2)2019 03 01.
Article in English | MEDLINE | ID: mdl-30915434

ABSTRACT

Non-typeable Haemophilus influenzae (NTHi) is a major pathogen in upper and lower respiratory tract infections in humans, and is increasingly also associated with invasive disease. We have examined two unrelated NTHi invasive disease isolates, R2866 and C188, in order to identify metabolic and physiological properties that distinguish them from respiratory tract disease isolates such as Hi2019. While the general use of the Hi metabolic network was similar across all three strains, the two invasive isolates secreted increased amounts of succinate, which can have anti-inflammatory properties. In addition, they showed a common shift in their carbon source utilization patterns, with strongly enhanced metabolism of nucleoside substrates, glucose and sialic acid. The latter two are major compounds present in blood and cerebrospinal fluid (CSF). Interestingly, C188 and R2866 also shared a reduced ability to invade or survive intracellularly in 16HBE14 bronchial epithelial cells relative to Hi2019 (4-fold (4 h), 25-fold (24 h) reduction). Altered metabolic properties, such as the ones observed here, could arise from genomic adaptations that NTHi undergo during infection. Together these data indicate that shifts in substrate preferences in otherwise conserved metabolic pathways may underlie strain niche specificity and thus have the potential to alter the outcomes of host-NTHi interactions.


Subject(s)
Adaptation, Physiological , Energy Metabolism , Haemophilus Infections/microbiology , Haemophilus influenzae/pathogenicity , Biofilms , Energy Metabolism/genetics , Gene Expression Regulation, Bacterial , Genome, Bacterial , Genomics , Haemophilus influenzae/classification , Host-Pathogen Interactions , Humans , Microbial Viability , Oxygen Consumption , Phenotype , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Respiratory Mucosa/microbiology
15.
Sci Rep ; 8(1): 4481, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29540723

ABSTRACT

By assisting in the proteolysis, disaggregation and refolding of the aggregated proteins, Caseinolytic proteases (Clps) enhance the cellular survival under stress conditions. In the current study, comparative roles of two such Clps, ClpA (involved in proteolysis) and ClpB (involved in protein disaggregation and refolding) in the survival of Salmonella Typhimurium (S. Typhimurium) under different stresses and in virulence have been investigated. clpA and clpB gene deletion mutant strains (∆clpA and ∆clpB) of S. Typhimurium have been hypersensitive to 42 °C, HOCl and paraquat. However, the ∆clpB strain was comparatively much more susceptible (p < 0.001) to the above stresses than ∆clpA strain. ∆clpB strain also showed reduced survival (p < 0.001) in poultry macrophages. The hypersusceptibilities of ∆clpB strain to oxidants and macrophages were restored in plasmid based complemented (∆clpB + pclpB) strain. Further, the ∆clpB strain was defective for colonization in the poultry caecum and showed decreased dissemination to the spleen and liver. Our findings suggest that the role of ClpB is more important than the role of ClpA for the survival of S. Typhimurium under stress and colonization in chickens.


Subject(s)
Endopeptidase Clp/metabolism , Poultry Diseases/microbiology , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/physiology , Stress, Physiological , Animals , Gene Deletion , Macrophages/immunology , Macrophages/metabolism , Monocytes/immunology , Monocytes/metabolism , Mutation , Oxidative Stress , Virulence
16.
Immunobiology ; 223(6-7): 501-507, 2018.
Article in English | MEDLINE | ID: mdl-29395289

ABSTRACT

Bacterial attachment to host cell is the first event for pathogen entry. The attachment is mediated through membrane expressed adhesins present on the organism and receptors on the cell surface of host. The objective of this study was to investigate the significance of Fc receptors (FcRs), actin filament polymerization, mannose receptors (MRs), carbohydrate moieties like N-linked glycans and sialic acid on chicken macrophages for invasion of S. Typhimurium. Opsonisation of S. Typhimurium resulted in three folds more invasion in chicken monocyte derived macrophages. Cytochalasin D, an inhibitor of actin filament polymerization prevented uptake of S. Typhimurium. Pre-incubation of macrophages with cytochalasin D, showed severe decrease (28 folds) in S. Typhimurium invasion. Next we attempted to analyse the role of carbohydrate receptors of macrophages in S. Typhimurium invasion. Treatment of macrophages with methyl α-d-mannopyranoside, PNGase F and neuraminidase, showed 2.5, 5 and 2.5 folds decrease in invasion respectively. Our data suggest that deglycosylation of N-linked glycans including sialic acid by PNGase F is more effective in inhibition of S. Typhimurium invasion than neuraminidase which removes only sialic acid. These findings suggested FcRs, actin filament polymerization, MRs, N-linked glycans and sialic acid may act as gateway for entry of S. Typhimurium.


Subject(s)
Actin Cytoskeleton/metabolism , Avian Proteins/metabolism , Chickens/immunology , Macrophages/immunology , Salmonella Infections/immunology , Salmonella typhimurium/physiology , Animals , Bacterial Adhesion , Cells, Cultured , Cytochalasin D/pharmacology , Humans , Lectins, C-Type/metabolism , Mannose Receptor , Mannose-Binding Lectins/metabolism , N-Acetylneuraminic Acid/metabolism , Polysaccharides/metabolism , Receptors, Cell Surface/metabolism , Receptors, Fc/metabolism
17.
Biochim Biophys Acta Gen Subj ; 1861(12): 3238-3245, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28941926

ABSTRACT

Defending phagocyte generated oxidants is the key for survival of Salmonella Typhimurium (S. Typhimurium) inside the host. Met residues are highly prone to oxidation and convert into methionine sulfoxide (Met-SO). Methionine sulfoxide reductase (Msr) can repair Met-SO to Met thus restoring the function(s) of Met-SO containing proteins. Using pull down method we have identified several MsrA interacting proteins in the S. Typhimurium, one of them was malate synthase (MS). MS is an enzyme of glyoxylate cycle. This cycle is essential for survival of S. Typhimurium inside the host under nutrient limiting conditions. By employing in vitro cross-linking and blot overlay techniques we showed that purified MsrA interacted with pure MS. Treatment of pure malate synthase with H2O2 resulted in reduction of MS activity. However, MsrA along with thioredoxin-thioredoxin reductase system partially restored the activity of oxidized MS. Our mass spectrometry data demonstrated H2O2 mediated oxidation and MsrA mediated repair of Met residues in MS. Further in comparison to S. Typhimurium, the msrA gene deletion (∆msrA) strain showed reduced (60%) malate synthase specific activity. Oral inoculation with wild type, ∆msrA and ∆ms strains of S. Typhimurium resulted in colonization of 100, 0 and 40% of the poultry respectively.


Subject(s)
Chickens/microbiology , Methionine Sulfoxide Reductases/physiology , Salmonella typhimurium/enzymology , Animals , Malate Synthase/metabolism
18.
Front Microbiol ; 8: 361, 2017.
Article in English | MEDLINE | ID: mdl-28326072

ABSTRACT

Poultry birds are asymptomatic reservoir of Salmonella Typhimurium (S. Typhimurium) but act as source of human infection for this bacterium. Inside the poultry, S. Typhimurium experiences several stresses, 42°C body temperature of birds is one of them. Proteins are highly susceptible to temperature mediated damage. Conversion of protein bound aspartate (Asp) residues to iso-aspartate (iso-Asp) is one of such modifications that occur at elevated temperature. Iso-Asp formation has been linked to protein inactivation and compromised cellular survival. Protein-L-isoaspartyl methyltransferase (PIMT) can repair iso-Asp back to Asp, thus enhances the cellular survival at elevated temperature. Here, we show that the pimt gene deletion strain of S. Typhimurium (Δpimt mutant strain) is hypersensitive to 42°C in vitro. The hypersusceptibility of Δpimt strain is partially reversed by plasmid based complementation (trans-complementation) of Δpimt strain. Following oral inoculation, Δpimt strain showed defective colonization in poultry caecum, and compromised dissemination to spleen and liver. Interestingly, we have observed three and half folds induction of the PIMT protein following exposure of S. Typhimurium to 42°C. Our data suggest a novel role of pimt gene in the survival of S. Typhimurium at elevated temperature and virulence.

19.
Prep Biochem Biotechnol ; 47(2): 137-142, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-27191346

ABSTRACT

Intraphagocytic survival of Salmonella Typhimurium (ST) depends (at least in part) upon its ability to repair oxidant-damaged macromolecules. Met residues either free or in protein bound form are highly susceptible to phagocyte-generated oxidants. Oxidation of Mets leads to Met-SO formation, consequently loss of protein functions that results in cell death. Methionine sulfoxide reductase (Msr) reductively repairs Met-SO to Met in the presence of thioredoxin (trx) and thioredoxin reductase (trxR). Earlier we reported that methionine sulfoxide reductase A (msrA) gene deletion strain of ST suffered oxidative stress.[1] Thioredoxin system of ST comprises of two thioredoxins (trxA and trxC) and one thioredoxin reductase (trxB). Preferred trx utilized in MsrA-mediated repair of Met-SO is not known. In current study, we cloned, expressed, and purified ST TrxA, TrxB, TrxC, and MsrA in recombinant forms. The migration of TrxA, TrxB, TrxC, and MsrA proteins was approximately 10, 36, 16, and 26 kDa on SDS-gels. The nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-linked reductase assays interpreted that MsrA utilized two times more NADPH for the reduction of S-methyl p-tolyl sulfoxide when TrxA was included in the assays as compared to TrxC.


Subject(s)
Methionine Sulfoxide Reductases/metabolism , Methionine/analogs & derivatives , Salmonella typhimurium/enzymology , Thioredoxins/metabolism , Cloning, Molecular , Electrophoresis, Agar Gel , Methionine/metabolism , Methionine Sulfoxide Reductases/genetics , Methionine Sulfoxide Reductases/isolation & purification , Polymerase Chain Reaction , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
20.
Int J Med Microbiol ; 306(4): 222-30, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27156953

ABSTRACT

The enteric pathogen Salmonella Typhimurium (ST) survives inside the oxidative environment of phagocytic cells. Phagocyte generated oxidants primarily target proteins and modify amino acids in them. These modifications render the targeted proteins functionally inactive. Conversion of Asp to iso-Asp is one of the several known oxidant mediated amino acids modifications. By repairing iso-Asp to Asp, protein-isoaspartyl methyltransferase (PIMT) maintains the activities of proteins and thus helps in cellular survival under oxidative stress. To elucidate the role of PIMT in ST survival under oxidative stress, we have constructed a pimt gene deletion strain (Δpimt strain) of ST. The Δpimt strain grows normally in various culture media in vitro. However, in comparison to wild type ST, the Δpimt strain is found significantly (p<0.001) more susceptible to H2O2 and hypochlorite (HOCl). Further, the Δpimt mutant strain shows hypersusceptibility (p<0.001) to INF-γ stimulated macrophages. This susceptibility is reversed by pharmacological inhibition of reactive oxygen species (ROS) but not reactive nitrogen species (RNS) production. Further, plasmid based complementation enhances the survival of Δpimt mutant strain against oxidants in vitro and also inside the macrophages. In mice model, the LD50 for wild type ST and mutant Δpimt has been 1.73×10(4) and 1.38×10(5), respectively. Further, the mutant strain shows reduced dissemination to spleen and liver in mice. Following infection with a mixture of wild type ST and the Δpimt mutant (co-infection experiment), we recover significantly (p<0.001) less numbers of mutant bacteria from the spleen and liver of mice.


Subject(s)
Microbial Viability , Oxidative Stress , Protein D-Aspartate-L-Isoaspartate Methyltransferase/metabolism , Salmonella typhimurium/enzymology , Salmonella typhimurium/physiology , Stress, Physiological , Animals , Bacterial Load , Female , Gene Deletion , Genetic Complementation Test , Hydrogen Peroxide/toxicity , Hypochlorous Acid/toxicity , Lethal Dose 50 , Liver/microbiology , Macrophages/immunology , Macrophages/microbiology , Mice , Oxidants/toxicity , Protein D-Aspartate-L-Isoaspartate Methyltransferase/genetics , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/pathology , Salmonella typhimurium/genetics , Salmonella typhimurium/growth & development , Spleen/microbiology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...