Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 2993, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30154466

ABSTRACT

Dynamical coupling with high-quality factor resonators is essential in a wide variety of hybrid quantum systems such as circuit quantum electrodynamics and opto/electromechanical systems. Nuclear spins in solids have a long relaxation time and thus have the potential to be implemented into quantum memories and sensors. However, state manipulation of nuclear spins requires high-magnetic fields, which is incompatible with state-of-the-art quantum hybrid systems based on superconducting microwave resonators. Here we investigate an electromechanical resonator whose electrically tunable phonon state imparts a dynamically oscillating strain field to the nuclear spin ensemble located within it. As a consequence of the dynamical strain, we observe both nuclear magnetic resonance (NMR) frequency shifts and NMR sidebands generated by the electromechanical phonons. This prototype system potentially opens up quantum state engineering for nuclear spins, such as coherent coupling between sound and nuclei, and mechanical cooling of solid-state nuclei.

2.
Nat Commun ; 7: 11132, 2016 Apr 11.
Article in English | MEDLINE | ID: mdl-27063939

ABSTRACT

Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter.

3.
Sci Adv ; 2(6): e1600236, 2016 06.
Article in English | MEDLINE | ID: mdl-28861469

ABSTRACT

Solving intractable mathematical problems in simulators composed of atoms, ions, photons, or electrons has recently emerged as a subject of intense interest. We extend this concept to phonons that are localized in spectrally pure resonances in an electromechanical system that enables their interactions to be exquisitely fashioned via electrical means. We harness this platform to emulate the Ising Hamiltonian whose spin 1/2 particles are replicated by the phase bistable vibrations from the parametric resonances of multiple modes. The coupling between the mechanical spins is created by generating two-mode squeezed states, which impart correlations between modes that can imitate a random, ferromagnetic state or an antiferromagnetic state on demand. These results suggest that an electromechanical simulator could be built for the Ising Hamiltonian in a nontrivial configuration, namely, for a large number of spins with multiple degrees of coupling.


Subject(s)
Electron Spin Resonance Spectroscopy , Ions/chemistry , Magnets/chemistry , Phonons , Computer Simulation , Models, Statistical , Monte Carlo Method , Phase Transition , Quantum Theory , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL
...