Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
J Helminthol ; 97: e11, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36698320

ABSTRACT

A new isolate of Mesorhabditis monhystera (Bütschli, ) Dougherty, is described and illustrated with morphological and molecular data. The phylogenetic analysis based on the D2/D3 segment of 28S rDNA using the Bayesian inference method, revealed monophyly of the genus Mesorhabditis as the subordinate taxa clustered in one clade. The clade further divided into two subclades representing the Monhystera-group and Spiculigera-group with 100% posterior probability values. However, GenBank sequences of several species constituting the Monhystera-group, showed high similarity and very little genetic divergence (98-99%) of up to 4-5 bases. In order to ascertain the status of those isolates, detailed morphological comparison is provided along with a pictorial key. A sequence-based phylogeography of haplogroups of Mesorhabditis using the median-joining network method, was also inferred. The results suggested the need for morphological validation of a species before its sequences are deposited in GenBank.


Subject(s)
Rhabditida , Rhabditoidea , Animals , Phylogeny , Bayes Theorem , Electrons , Microscopy, Electron, Scanning
2.
J Helminthol ; 96: e41, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35726176

ABSTRACT

Based on morphometric, morphological and molecular characterization using partial small subunit 18S ribosomal DNA (rDNA) and the D2/D3 domain of large subunit 28S rDNA, we described a new species Mononchoides kanzakii collected from manure, and the known species Mononchoides composticola Steel, Moens, Scholaert, Boshoff, Houthoofd and Bert, 2011, isolated from the dung beetle Oniticellus cinctus (Fabricius, 1775). Phylogenetic trees based on the evolutionary model (GTR + I + G) were inferred by Bayesian inference algorithms. Mononchoides kanzakii sp. n. is characterized by 28-32 longitudinal ridges, discontinuous at level of stoma; amphidial apertures inconspicuous; metastegostom armed with thorn-shaped dorsal tooth; a flattened, claw-like right subventral tooth, and left subventral denticulate ridge with 12-14 fine denticles delimited by a group of five denticles in females vs. triangular, flattened right subventral tooth, 5-8 prominent denticles at left subventral sector in males; cloacal lips with a distinct rim; and gubernaculum with cuticularized, proximal and distal extensions of equal length, each constituting half of the length of the wider part of gubernaculum.


Subject(s)
Dental Pulp Calcification , Rhabditida , Animals , Bayes Theorem , DNA, Ribosomal/genetics , Female , Male , Phylogeny
3.
J Helminthol ; 96: e14, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35197147

ABSTRACT

The new species Fictor platypapillata was isolated from dung beetle Oniticellus cinctus (Scarabaeidae), collected from the district Balrampur, Uttar Pradesh, India. Fictor platypapillata sp. n. is described based on morphology, morphometric and molecular characterization, supplemented with scanning electron microscopy observations. The new species is characterized by two female morphs based on stomatal dimorphism: α morph with left subventral wall having 14 denticles, six low conical and eight elongated finger-like, slender denticles separated by a deep groove; inner wall of gymnostom with linearly arranged warts; ß morph with inner wall of gymnostom lacking warts; dorsal and right subventral stegostomal walls having large, slender teeth with hook-shaped apical end. Genital sensilla eight pairs with v5 pair flattened, button-shaped, located ventrally. The phylogenetic analyses revealed significant congruence, especially in the position of the subordinate taxa of genus Fictor that shows polyphyly by both Bayesian inference and minimum evolution methods. The taxonomy of the genus is updated with a valid species list along with their geographical mapping.


Subject(s)
Coleoptera , Nematoda , Rhabditida , Animals , Bayes Theorem , Female , India , Phylogeny
4.
ISA Trans ; 114: 331-346, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33408036

ABSTRACT

This article presents a unified approach of controller design in cascade control structure (CCS) for unstable, integrating and stable processes with dead-time to achieve enhanced load disturbance rejection. The design of inner and outer loop controllers in CCS is based, partially on the direct synthesis approach and partially on the pole placement method. First, the parameters of the inner loop controller are obtained and then the outer loop controller is designed by considering the inner loop as a part of the primary plant. The proposed design approach deals with a wide range of processes having unstable, integrating and stable dynamics in a unified way. It is applied directly on the higher and lower order processes, as the proposed strategy is acquitted from the approximation of the dead-time and model order reduction of the plant. Simulations have been conducted to show the efficacy of the present approach. The results shows that the present approach provides enhanced regulatory performance as compared to the recently reported approaches from the literature.

5.
Nat Prod Res ; 35(8): 1357-1363, 2021 Apr.
Article in English | MEDLINE | ID: mdl-31397595

ABSTRACT

A new steroidal ester bearing n-nonadecanoyl moiety (1) and a mixture of isomeric cerebrosides (2) along with two known compounds were isolated from the methanol extract of the stem-bark of Anacardium occidentale. The structure of the new steroidal ester was determined as 3-n-nonadecanoyl-ß-sitosterol on the basis of modern spectroscopic techniques (IR, ESI-MS, HR-ESIMS, 1D and 2D NMR) and chemical degradation studies. The structures of the known compounds were identified as gallic acid and tanacetene by comparison of the spectroscopic data with those of reported data. The mixture of cerebrosides was confirmed based on the analysis of 1D and 2D NMR. These compounds were evaluated for cytotoxicity against human cancer cell lines A549, SCOV3 and rat normal cell line NRK49f.


Subject(s)
Anacardium/chemistry , Plant Bark/chemistry , Plant Stems/chemistry , Sitosterols/isolation & purification , Animals , Carbon-13 Magnetic Resonance Spectroscopy , Cell Line, Tumor , Humans , Inhibitory Concentration 50 , Plant Extracts/chemistry , Proton Magnetic Resonance Spectroscopy , Rats , Sitosterols/pharmacology
6.
Front Plant Sci ; 12: 766523, 2021.
Article in English | MEDLINE | ID: mdl-34975950

ABSTRACT

Surface mining is a critical anthropogenic activity that significantly alters the ecosystem. Revegetation practices are largely utilized to compensate for these detrimental impacts of surface mining. In this study, we investigated the effects of five water (W) regimes [W40: 40%, W48: 48%, W60: 60%, W72: 72%, and W80: 80% of field capacity (FC)], five nitrogen (N) (N0: 0, N24: 24, N60: 60, N96: 96, and N120: 120 mg kg-1 soil), and five phosphorus (P) fertilizer doses (P0: 0, P36: 36, P90: 90, P144: 144, and P180: 180 mg kg-1 soil) on morpho-physiological and biochemical parameters of Ammopiptanthus mongolicus plants to assess the capability of this species to be used for restoration purposes. The results showed that under low W-N resources, A. mongolicus exhibited poor growth performance (i.e., reduced plant height, stem diameter, and dry biomass) in coal-degraded spoils, indicating that A. mongolicus exhibited successful adaptive mechanisms by reducing its biomass production to survive long in environmental stress conditions. Compared with control, moderate to high W and N-P application rates greatly enhanced the net photosynthesis rates, transpiration rates, water-use efficiency, chlorophyll (Chl) a, Chl b, total Chl, and carotenoid contents. Under low-W content, the N-P fertilization enhanced the contents of proline and soluble sugar, as well as the activities of superoxide dismutase, catalase, and peroxidase in leaf tissues, reducing the oxidative stress. Changes in plant growth and metabolism in W-shortage conditions supplied with N-P fertilization may be an adaptive strategy that is essential for its conservation and restoration in the desert ecosystem. The best growth performance was observed in plants under W supplements corresponding to 70% of FC and N and P doses of 33 and 36 mg kg-1 soil, respectively. Our results provide useful information for revegetation and ecological restoration in coal-degraded and arid-degraded lands in the world using endangered species A. mongolicus.

7.
Saudi J Biol Sci ; 24(6): 1172-1180, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28855809

ABSTRACT

Iron oxide nanoparticles (Fe2O3-IONPs) have revolutionized the industry by significant economic and scientific impacts. Enormous increase in the usage of IONPs has raised concerns about their unseen adverse effects. In the current study, we investigated the effects of IONPs and its bulk on oxidative stress biomarkers, histopathology and biodistribution in rats after 28 days repeated oral treatment at 30, 300 and 1000 mg/kg body weight (b.w.). IONPs size in dry, wet forms and crystallinity was determined using TEM, DLS and XRD. The investigation of oxidative stress biomarkers demonstrated significant increase in lipid peroxidation and decrease in reduced glutathione content in the liver, kidney and the brain of the treated groups in a dose dependant manner. Further, antioxidant enzymes catalase, glutathione S transferase, glutathione peroxidase and glutathione reductase activities were significantly elevated along with significant decrease in superoxide dismutase activity in treated rat organs. ICP-OES analysis revealed dose and size dependant accumulation of IONPs in the liver followed by kidney and the brain than bulk. Moreover, accumulation of IONPs at high dose brought pathological changes only in liver. A large fraction of IONPs was eliminated in urine. Bulk material was substantially excreted in faeces than IONPs suggesting increased absorption of IONPs. In conclusion accumulated IONPs and bulk in organs trigger free radical generation, leading to the induction of oxidative stress condition in rats. The results obtained highlight the importance of toxicity assessments in evaluating the efficiency of IONPs for the safe implementation for diversified applications.

8.
Biomarkers ; 22(5): 446-454, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27775440

ABSTRACT

OBJECTIVE: This study was designed to determine the genotoxic effect of exposure to a mixture of pesticides in 106 female agricultural workers employed in cotton fields from India. METHODS: Comet, micronucleus and chromosomal aberrations tests were carried out in peripheral blood lymphocytes. Micronucleus test was also performed in buccal epithelial cells. Levels of antioxidant enzymes, RBC acetylcholinesterase and hematological parameters were analyzed in the blood samples of the study subjects. RESULTS: The results indicated significant DNA damage, increased frequency of micronuclei and chromosomal aberrations in the exposed subjects (p < 0.05). The levels of antioxidant enzymes were significantly lowered and the rate of lipid peroxidation was elevated in the exposed subjects. CONCLUSION: The outcome of the study revealed an increased risk of genotoxicity and health implications in female agricultural workers.


Subject(s)
Agriculture , Mutagenicity Tests/methods , Occupational Exposure/analysis , Pesticides/pharmacology , Acetylcholinesterase/metabolism , Adolescent , Adult , Antioxidants/metabolism , Chromosome Aberrations/chemically induced , DNA Damage/drug effects , Female , Humans , India , Lipid Peroxidation/drug effects , Lymphocytes/chemistry , Micronucleus Tests , Oxidoreductases/metabolism , Pesticides/toxicity , Young Adult
9.
BMC Biol ; 14(1): 84, 2016 10 03.
Article in English | MEDLINE | ID: mdl-27716181

ABSTRACT

BACKGROUND: In February 2016, a new fungal disease was spotted in wheat fields across eight districts in Bangladesh. The epidemic spread to an estimated 15,000 hectares, about 16 % of the cultivated wheat area in Bangladesh, with yield losses reaching up to 100 %. Within weeks of the onset of the epidemic, we performed transcriptome sequencing of symptomatic leaf samples collected directly from Bangladeshi fields. RESULTS: Reinoculation of seedlings with strains isolated from infected wheat grains showed wheat blast symptoms on leaves of wheat but not rice. Our phylogenomic and population genomic analyses revealed that the wheat blast outbreak in Bangladesh was most likely caused by a wheat-infecting South American lineage of the blast fungus Magnaporthe oryzae. CONCLUSION: Our findings suggest that genomic surveillance can be rapidly applied to monitor plant disease outbreaks and provide valuable information regarding the identity and origin of the infectious agent.


Subject(s)
Magnaporthe/pathogenicity , Plant Diseases/microbiology , Triticum/microbiology , Bangladesh , Gene Expression Regulation, Plant , Plant Diseases/genetics , Triticum/genetics
10.
Environ Sci Pollut Res Int ; 23(4): 3914-24, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26503004

ABSTRACT

The nanotechnology industry has advanced rapidly in the last 10 years giving rise to the growth of the nanoparticles (NPs) with great potential in various arenas. However, the same properties that make NPs interesting raise concerns because their toxicity has not been explored. The in vivo toxicology of chromium oxide (Cr2O3)-NPs is not known till date. Therefore, this study investigated the 28-day repeated toxicity after 30, 300 and 1000 mg/kg body weight (bw)/day oral treatment with Cr2O3-NPs and Cr2O3 microparticles (MPs) in Wistar rats. The mean size of Cr2O3-NPs and Cr2O3-MPs was 34.89 ± 2.65 nm and 3.76 ± 3.41 µm, respectively. Genotoxicity was assessed using comet, micronucleus and chromosomal aberration (CA) assays. The results revealed a significant increase in DNA damage in peripheral blood leucocytes and liver, micronuclei and CA in bone marrow after exposure of 300 and 1000 mg/kg doses of Cr2O3-NPs and Cr2O3-MPs only at 1000 mg/kg bw/day. Cr biodistribution was observed in all the tissues in a dose-dependent manner. The maximum amount of Cr was found in the kidneys and least in the brain of the treated rats. More of the Cr was excreted in the faeces than in the urine. Furthermore, nanotreated rats displayed much higher absorption and tissue accumulation. These findings provide initial data of the probable genotoxicity and biodistribution of NPs and MPs of Cr2O3 generated through repeated oral treatment.


Subject(s)
Chromium Compounds/toxicity , Mutagens/toxicity , Nanoparticles/toxicity , Administration, Oral , Animals , Chromosome Aberrations , DNA Damage , Female , Liver/drug effects , Male , Micronucleus Tests , Rats , Rats, Wistar , Tissue Distribution
11.
Environ Sci Pollut Res Int ; 22(17): 13453-63, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25940462

ABSTRACT

Increasing use of heavy metals in various fields, their environmental persistency, and poor regulatory efforts have significantly increased their fraction in river water. We studied the effect of Musi river water pollution on oxidative stress biomarkers and histopathology in rat after 28 days repeated oral treatment. River water analysis showed the presence of Zn and Pb at mg/l concentration and Ag, As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Sn, and Sb at µg/l concentration. River water treatment resulted in a dose-dependent accumulation of metals in rat organs, being more in liver followed by kidney and brain. Metal content in both control and low-dose group rat organs was below limit of detection. However, metal bioaccumulation in high- and medium-dose group organs as follows: liver-Zn (21.4 & 14.5 µg/g), Cu (8.3 & 3.6 µg/g), and Pb (8.2 & 0.4 µg/g); kidney-Zn (16.2 & 7.9 µg/g), Cu (3.5 & 1.4 µg/g), Mn (2.9 & 0.5 µg/g), and Pb (2.6 & 0.5 µg/g); and brain-Zn (2.4 & 1.1 µg/g), and Ni (1 & 0.3 µg/g). These metals were present at high concentrations in respective organs than other metals. The increased heavy metal concentration in treated rat resulted significant increase in superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione S transferase enzymes activity, and lipid peroxidation in a dose-dependent manner. However, glutathione content and catalase activity were significantly decreased in treated rat organs. Histopathological examination also confirmed morphological changes in rat organs due to polluted river water treatment. In conclusion, the findings of this study clearly indicate the oxidative stress condition in rat organs due to repeated oral treatment of polluted Musi river water.


Subject(s)
Environmental Monitoring/methods , Metals, Heavy/toxicity , Oxidative Stress/drug effects , Rivers/chemistry , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/analysis , Brain/drug effects , Brain/metabolism , Brain/pathology , Dose-Response Relationship, Drug , Female , Glutathione/metabolism , Glutathione Peroxidase/metabolism , India , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Metals, Heavy/analysis , Rats, Wistar , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/analysis
12.
J Appl Toxicol ; 33(10): 1165-79, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23702825

ABSTRACT

In the near future, nanotechnology is envisaged for large-scale use. Hence health and safety issues of nanoparticles (NPs) should be promptly addressed. Twenty-eight-day oral toxicity, genotoxicity, biochemical alterations, histopathological changes and tissue distribution of nano and microparticles (MPs) of manganese oxide (MnO2 ) in Wistar rats was studied. Genotoxicity was assessed using comet, micronucleus and chromosomal aberration assays. The results demonstrated a significant increase in DNA damage in leukocytes, micronuclei and chromosomal aberrations in bone marrow cells after exposure of MnO2 -NPs at 1000, 300 mg kg(-1) bw per day and MnO2 -MPs at the dose of 1000 mg kg(-1) bw per day. Our findings showed acetylcholinestrase inhibition at 1000 as well as at 300 mg kg(-1) bw per day in blood and with all the doses in the brain indicating the toxicity of MnO2 -NPs. Further, the doses significantly inhibited different ATPases in the brain P2 fraction. Significant changes were observed in aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) in the liver, kidney and serum in a dose-dependent manner. MnO2 -MPs at 1000 mg kg(-1) bw per day were found to induce significant alterations in biochemical enzymes. A significant distribution was found in all the tissues in a dose-dependent manner. MnO2 -NPs showed a much higher absorptivity and tissue distribution as compared with MnO2 -MPs. A large fraction of MnO2 -NPs and MnO2 -MPs was cleared by urine and feces. Histopathological analysis revealed that MnO2 -NPs caused alterations in liver, spleen, kidney and brain. The MnO2 -NPs induced toxicity at lower doses compared with MnO2 -MPs. Further, this study did not display gender differences after exposure to MnO2 -NPs and MnO2 -MPs. Therefore, the results suggested that prolonged exposure to MnO2 has the potential to cause genetic damage, biochemical alterations and histological changes.


Subject(s)
Metal Nanoparticles/toxicity , Oxides/toxicity , Administration, Oral , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Chromosome Aberrations , Comet Assay , DNA Damage/drug effects , Female , Kidney/drug effects , Kidney/pathology , L-Lactate Dehydrogenase/blood , Liver/drug effects , Liver/pathology , Male , Manganese Compounds , Metal Nanoparticles/chemistry , Micronucleus Tests , Rats , Rats, Wistar , Spleen/drug effects , Spleen/pathology , Tissue Distribution , Toxicity Tests, Subchronic
13.
Mutat Res ; 754(1-2): 39-50, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23618923

ABSTRACT

The use of nanotechnology has led to rapid growth in various areas. Manganese oxide (MnO2) nanomaterials (NMs) are typically used for biomedical applications. However, characterizing the potential human health effects of MnO2 NMs is required before fully exploiting these materials. The aim of this study was to investigate the acute oral toxicity of MnO2 NMs and MnO2-bulk particles in female albino Wistar rats. The genotoxic effects were examined using comet, micronucleus and chromosomal aberration assays. Nanosized MnO2 (45nm) significantly (p<0.01) increased DNA damage in peripheral blood leukocytes and micronuclei and enhanced chromosomal aberrations in the bone marrow cells at 1000mg/kg bw. These findings showed that the neurotoxicity of MnO2-45nm in the brain and red blood cells, as determined through acetylcholinesterase activity, was significantly (p<0.01) inhibited at 1000 and 500mg/kg bw doses. MnO2-45nm disrupted the physicochemical state and neurological system of the animals through alterations in ATPases via the total Na(+)-K(+), Mg(2+) and Ca(2+) levels in the brain P2 fraction. In addition, 500 and 1000mg/kg bw doses of MnO2-45nm caused significant changes in AST, ALT and LDH levels in the liver, kidney and serum of treated rats. Significant tissue distribution was found in all tissues in a dose- and time-dependent manner. MnO2-45nm exhibited much higher absorptivity and tissue distribution compared with MnO2-bulk. A large fraction of MnO2-45nm was cleared in the urine and feces. The histopathological analysis revealed that MnO2-45nm caused alterations in the liver, spleen and brain. These findings will provide fundamental information regarding the potential toxicities and biodistribution of nano and bulk MnO2 generated through acute oral treatment.


Subject(s)
Oxides/toxicity , Administration, Oral , Animals , Body Weight/drug effects , Chromosome Aberrations , Comet Assay , Feeding Behavior , Female , Manganese Compounds/administration & dosage , Manganese Compounds/pharmacokinetics , Micronucleus Tests , Microscopy, Electron, Transmission , Organ Size/drug effects , Oxides/administration & dosage , Oxides/pharmacokinetics , Particle Size , Rats , Rats, Wistar , Tissue Distribution
14.
Environ Monit Assess ; 185(5): 3839-51, 2013 May.
Article in English | MEDLINE | ID: mdl-22923377

ABSTRACT

The vast coastal and marine resources that occur along the southern edge of Bangladesh make it one of the most productive areas of the world. However, due to growing anthropogenic impacts, this area is under considerable environmental pressure from both physical and chemical stress factors. Ship breaking, or the dismantling and demolition of out-of-service ocean-going vessels, has become increasingly common in many coastal areas. To investigate the extent of ship breaking activities in Bangladesh along the Sitakunda coast, various spatial and non-spatial data were obtained, including remote sensing imagery, statistical records and published reports. Impacts to coastal and marine life were documented. Available data show that ship breaking activities cause significant physical disturbance and release toxic materials into the environment, resulting in adverse effects to numerous marine taxonomic groups such as fish, mammals, birds, reptiles, plants, phytoplankton, zooplankton and benthic invertebrates. Landsat imagery illustrates that the negatively impacted coastal area has grown 308.7 % from 367 ha in 1989 to 1,133 ha in 2010. Physicochemical and biological properties of coastal soil and water indicate substantially elevated pollution that poses a risk of local, regional and even global contamination through sea water and atmospheric transport. While damage to the coastal environment of Bangladesh is a recognized hazard that must be addressed, the economic benefits of ship breaking through job creation and fulfilling the domestic demand for recycled steel must be considered. Rather than an outright ban on beach breaking of ships, the enterprise must be recognized as a true and influential industry that should be held responsible for developing an economically viable and environmentally proactive growth strategy. Evolution of the industry toward a sustainable system can be aided through reasonable and enforceable legislative and judicial action that takes a balanced approach, but does not diminish the value of coastal conservation.


Subject(s)
Environmental Policy , Industrial Waste/statistics & numerical data , Ships/statistics & numerical data , Animals , Aquatic Organisms/classification , Bangladesh , Biodiversity , Conservation of Natural Resources , Industrial Waste/analysis , Refuse Disposal , Seawater/chemistry , Water Pollution, Chemical/legislation & jurisprudence , Water Pollution, Chemical/statistics & numerical data
15.
Toxicol Appl Pharmacol ; 266(1): 56-66, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23142030

ABSTRACT

Though nanomaterials (NMs) are being utilized worldwide, increasing use of NMs have raised concerns over their safety to human health and environment. Iron oxide (Fe(2)O(3)) NMs have important applications. The aim of this study was to assess the genotoxicity of Fe(2)O(3)-30nm and Fe(2)O(3)-bulk in female Wistar rats. Fe(2)O(3)-30nm was characterized by using transmission electron microscopy, dynamic light scattering, laser Doppler velocimetry and surface area analysis. The rats were treated orally with the single doses of 500, 1000, 2000mg/kg bw of Fe(2)O(3)-30nm and Fe(2)O(3) -bulk. The genotoxicity was evaluated at 6, 24, 48 and 72h by the comet assay in leucocytes, 48 and 72h by micronucleus test (MNT) in peripheral blood cells, 18 and 24h by chromosomal aberration (CA) assay and 24 and 48h by MNT in bone marrow cells. The biodistribution of iron (Fe) was carried out at 6, 24, 48 and 72h after treatment in liver, spleen, kidney, heart, brain, bone marrow, urine and feces by using atomic absorption spectrophotometry. The % tail DNA, frequencies of micronuclei and CAs were statistically insignificant (p>0.05) at all doses. These results suggest that Fe(2)O(3)-30nm and Fe(2)O(3)-bulk was not genotoxic at the doses tested. Bioavailability of Fe was size and dose dependent in all the tissues from the groups exposed to Fe(2)O(3)-30nm. Fe(2)O(3) NMs were able to enter in the organs and the rats are biocompatible with much higher concentration of Fe. However, the accumulated Fe did not cause significant genotoxicity. This study provides additional knowledge about the toxicology of Fe(2)O(3) NMs.


Subject(s)
DNA Damage/physiology , Ferric Compounds/metabolism , Ferric Compounds/toxicity , Metal Nanoparticles/toxicity , Administration, Oral , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , DNA Damage/drug effects , Dose-Response Relationship, Drug , Female , Ferric Compounds/administration & dosage , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Metal Nanoparticles/administration & dosage , Random Allocation , Rats , Rats, Wistar , Time Factors , Tissue Distribution/drug effects , Tissue Distribution/physiology
16.
Toxicol Int ; 19(1): 20-4, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22736898

ABSTRACT

Antineoplastic drugs (ANDs) have been in clinical usage for more than five decades. The nonselective mechanism of action of ANDs between cancerous and noncancerous cells had well documented side effects such as acute symptoms, reproductive health issues, and potential cancer development in healthcare workers as a result of occupational exposure. The anticancer mechanism of ANDs is the generation of reactive oxygen species (ROS) which are responsible for various side effects in patients undergoing chemotherapy and the healthcare personnel occupationally exposed to them. ROS have potential to damage lipids, DNA, proteins, and so on leading to oxidative stress condition. The aim of this study was to evaluate the possible oxidative stress effect of antineoplastic drugs in nurses who routinely handle ANDs in an oncology hospital in south India. Malondialdehyde levels, reduced glutathione content, and glutathione S-transferase activity were analyzed in serum collected from 60 female nurses handling ANDs and compared with equal number of healthy volunteers matched by age and sex except AND exposure. The results showed statistically significant (P < 0.05) increase in malondialdehyde levels in the serum of exposed nurses. However, glutathione content and glutathione S-transferase activity was significantly decreased in these nurses. Our study suggests that the nurses occupationally exposed to ANDs were susceptible to the oxidative stress and emphasizes the need for a harmonized safe handling approach that assures minimal risk to the working nurses.

17.
Environ Mol Mutagen ; 52(4): 310-8, 2011 May.
Article in English | MEDLINE | ID: mdl-20872828

ABSTRACT

Fuel (diesel and petrol) constitutes a complex mixture of volatile flammable liquid hydrocarbons among them benzene (BZ), toluene (TOL), and xylene (XYL) are considered to be the most hazardous, predominantly BZ because of its carcinogenic potency. Exposure to these compounds may have an impact on the health of the exposed subjects. Hence, genotoxicity and quantitative analysis of these compounds was performed in blood and urine samples of 200 workers exposed to fuel in filling stations and compared to controls. The level of genetic damage was determined by micronucleus test (MNT) in buccal epithelial cells (BEC) and chromosomal aberrations (CA) assay in peripheral blood lymphocytes (PBL) of fuel filling station attendants (FFSA) and compared to a matched control group. Urine analysis for BZ and its metabolites, phenol (Ph), trans, trans-Muconic Acid (t, t-MA), and S-Phenyl Mercapturic Acid (S-PMA) was done in all the study subjects. The results of our study revealed that exposure to BTX in petrol vapors induced a statistically significant increase in the frequency of micronuclei (MN) and CA in the exposed subjects than in controls (P < 0.05). There was a significant rise in the levels of urinary BZ, Ph, t, t-MA, and S-PMA in the exposed subjects. Our study highlights the significance of MNT, CA, and urinary metabolites as potential biological exposure indices of genetic damage in FFSA. This study suggests the need for regular monitoring of FFSA for possible exposure to BTX as a precautionary and preventive step to minimize exposure and reduce the associated health risks.


Subject(s)
Benzene/metabolism , DNA Damage , Gasoline/toxicity , Micronuclei, Chromosome-Defective/chemically induced , Acetylcysteine/metabolism , Acetylcysteine/urine , Adult , Alcohol Drinking/epidemiology , Benzene/toxicity , Female , Humans , Male , Micronuclei, Chromosome-Defective/statistics & numerical data , Mutagens/metabolism , Mutagens/toxicity , Occupational Exposure/adverse effects , Occupational Exposure/statistics & numerical data , Phenol/metabolism , Phenol/urine , Smoking/epidemiology , Sorbic Acid/analogs & derivatives , Sorbic Acid/metabolism
18.
Toxicol In Vitro ; 24(6): 1871-6, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20624453

ABSTRACT

The aim of the current study was to evaluate the potential mutagenicity of aluminium oxide nanomaterials (NMs) (Al(2)O(3)-30 nm and Al(2)O(3)-40 nm). Characterization of the NMs was done before the initiation of the study. The mutagenicity of the NMs was studied by the Ames test with Salmonella typhimurium TA100, TA1535, TA98, TA97a and TA102 strains, in the presence and absence of the S9 mixture. Based on a preliminary cytotoxicity study conducted on the strains, different concentrations of Al(2)O(3)-30 nm, Al(2)O(3)-40 nm and Al(2)O(3)-bulk were selected. At all the concentrations tested, Al(2)O(3)-30 nm and Al(2)O(3)-40 nm did not significantly increase the number of revertant colonies compared to the Al(2)O(3)-bulk and control with or without S9 mixture. Our findings suggest that Al(2)O(3) NMs were devoid of any size and concentration dependent mutagenicity compared to the Al(2)O(3)-bulk and control.


Subject(s)
Aluminum Oxide/toxicity , Metal Nanoparticles/toxicity , Mutagens/adverse effects , Ribosomal Proteins/drug effects , Salmonella typhimurium/drug effects , Aluminum Oxide/classification , Aluminum Oxide/metabolism , Animals , Cell Fractionation , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Microsomes, Liver , Mutagens/classification , Mutagens/metabolism , Rats , Rats, Sprague-Dawley , Ribosomal Protein S9 , Ribosomal Proteins/metabolism , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism
19.
Int J Hyg Environ Health ; 213(2): 99-106, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20153251

ABSTRACT

Lead (Pb) is a widely used heavy metal with a broad industrial usage. Nevertheless, Pb is a serious public health issue as it is one of the most widespread environmental and industrial toxins. The aim of this investigation was to assess the genotoxicity of Pb using the comet assay, micronucleus (MN) and chromosomal aberrations (CA) test. Blood and urinary Pb content, levels of delta-aminolevulinic acid dehydratase in the erythrocytes (E-ALAD) and delta-aminolevulinic acid in urine (U-ALA) were determined. The exposure associated oxidative stress was also studied. The study group comprised of 90 male Pb recovery unit workers and 90 matched controls. The results indicated that the exposed workers had a significantly higher mean comet tail length than that of controls (P<0.05). Analysis of micronuclei in buccal epithelial cells (BEC's) and peripheral blood lymphocytes (PBL) revealed that there was a significant increase in frequency of MN in exposed subjects than controls. The frequency of aberrant metaphases was also found to be significantly elevated in the Pb exposed workers. The levels of antioxidant enzymes were relatively reduced (P>0.05) while the rate of lipid peroxidation was higher in the exposed subjects. Blood and urinary Pb concentrations were found to be higher in exposed workers than in controls. E-ALAD levels were reduced and U-ALA levels were elevated in the exposed subjects in comparison to controls. Results of analysis, taking the confounding factors into consideration provide evidence for the association of Pb exposure and genotoxicity, and predict the increased risk of cancer to the exposed workers. In view of the observed results, it can be strongly concluded that the workers comprise the risk group and adequate safety, precautionary and preventive measures could only minimize exposure and the related health hazards.


Subject(s)
Antioxidants/metabolism , Chromosome Aberrations/chemically induced , DNA Damage , Lead/toxicity , Occupational Exposure , Adult , Aminolevulinic Acid/urine , Case-Control Studies , Comet Assay , Erythrocytes/enzymology , Humans , Lead/blood , Lead/urine , Male , Micronucleus Tests , Oxidative Stress , Porphobilinogen Synthase/metabolism
20.
Mutat Res ; 676(1-2): 41-7, 2009 May 31.
Article in English | MEDLINE | ID: mdl-19486863

ABSTRACT

Nanomaterials have novel properties and functions because of their small size. The unique nature of nanomaterials may be associated with potentially toxic effects. The aim of this study was to evaluate the in vivo genotoxicity of rats exposed with Aluminum oxide nanomaterials. Hence in the present study, the genotoxicity of Aluminum oxide nanomaterials (30 and 40 nm) and its bulk material was studied in bone marrow of female Wistar rats using chromosomal aberration and micronucleus assays. The rats were administered orally with the doses of 500, 1000 and 2000 mg/kg bw. Statistically significant genotoxicity was observed with Aluminum oxide 30 and 40 nm with micronucleus as well as chromosomal aberration assays. Significantly (p < 0.05 or p < 0.001) increased frequency of MN was observed with 1000 and 2000 mg/kg bw dose levels of Aluminum oxide 30 nm (9.4 +/- 1.87 and 15.2 +/- 2.3, respectively) and Aluminum oxide 40 nm (8.1 +/- 1.8 and 13.9 +/- 2.21, respectively) over control (2.5 +/- 0.7) at 30 h. Likewise, at 48 h sampling time a significant (p < 0.05 or p < 0.001) increase in frequency of MN was evident at 1000 and 2000 mg/kg bw dose levels of Aluminum oxide 30 nm (10.6 +/- 1.68 and 16.6 +/- 2.66, respectively) and Aluminum oxide 40 nm (9.0 +/- 1.38 and 14.7 +/- 1.68, respectively) compared to control (1.8 +/- 0.75). Significantly increased frequencies (p < 0.05 or p < 0.001) of chromosomal aberrations were observed with Aluminum oxide 30 nm (1000 and 2000 mg/kg bw) and Aluminum oxide 40 nm (2000 mg/kg bw) in comparison to control at 18 and 24 h. Further, since there is need for information on the toxicokinetics of nanomaterials, determination of these properties of the nanomaterials was carried out in different tissues, urine and feces using inductively coupled plasma mass spectrometry (ICP-MS). A significant size dependent accumulation of Aluminum oxide nanomaterials occurred in different tissues, urine and feces of rats as shown by ICP-MS data. The results of our study suggest that exposure to Aluminum oxide nanomaterials has the potential to cause genetic damage.


Subject(s)
Air Pollutants, Occupational/adverse effects , Aluminum Oxide/toxicity , Bone Marrow/radiation effects , Chromosome Aberrations/chemically induced , Nanostructures/toxicity , Administration, Oral , Animals , Dose-Response Relationship, Drug , Female , Inhalation Exposure , Micronuclei, Chromosome-Defective/chemically induced , Micronucleus Tests , Mutagenicity Tests , Nanostructures/adverse effects , Nanostructures/chemistry , Occupational Exposure , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...