Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Respir Crit Care Med ; 208(10): 1075-1087, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37708400

ABSTRACT

Rationale: IL-33 is a proinflammatory cytokine thought to play a role in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD). A recent clinical trial using an anti-IL-33 antibody showed a reduction in exacerbation and improved lung function in ex-smokers but not current smokers with COPD. Objectives: This study aimed to understand the effects of smoking status on IL-33. Methods: We investigated the association of smoking status with the level of gene expression of IL-33 in the airways in eight independent transcriptomic studies of lung airways. Additionally, we performed Western blot analysis and immunohistochemistry for IL-33 in lung tissue to assess protein levels. Measurements and Main Results: Across the bulk RNA-sequencing datasets, IL-33 gene expression and its signaling pathway were significantly lower in current versus former or never-smokers and increased upon smoking cessation (P < 0.05). Single-cell sequencing showed that IL-33 is predominantly expressed in resting basal epithelial cells and decreases during the differentiation process triggered by smoke exposure. We also found a higher transitioning of this cellular subpopulation into a more differentiated cell type during chronic smoking, potentially driving the reduction of IL-33. Protein analysis demonstrated lower IL-33 levels in lung tissue from current versus former smokers with COPD and a lower proportion of IL-33-positive basal cells in current versus ex-smoking controls. Conclusions: We provide strong evidence that cigarette smoke leads to an overall reduction in IL-33 expression in transcriptomic and protein level, and this may be due to the decrease in resting basal cells. Together, these findings may explain the clinical observation that a recent antibody-based anti-IL-33 treatment is more effective in former than current smokers with COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Smokers , Humans , Interleukin-33/genetics , Smoking/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Gene Expression Profiling
2.
Hum Mol Genet ; 32(17): 2704-2716, 2023 08 26.
Article in English | MEDLINE | ID: mdl-37369005

ABSTRACT

Engineering single base edits using CRISPR technology including specific deaminases and single-guide RNA (sgRNA) is a rapidly evolving field. Different types of base edits can be constructed, with cytidine base editors (CBEs) facilitating transition of C-to-T variants, adenine base editors (ABEs) enabling transition of A-to-G variants, C-to-G transversion base editors (CGBEs) and recently adenine transversion editors (AYBE) that create A-to-C and A-to-T variants. The base-editing machine learning algorithm BE-Hive predicts which sgRNA and base editor combinations have the strongest likelihood of achieving desired base edits. We have used BE-Hive and TP53 mutation data from The Cancer Genome Atlas (TCGA) ovarian cancer cohort to predict which mutations can be engineered, or reverted to wild-type (WT) sequence, using CBEs, ABEs or CGBEs. We have developed and automated a ranking system to assist in selecting optimally designed sgRNA that considers the presence of a suitable protospacer adjacent motif (PAM), the frequency of predicted bystander edits, editing efficiency and target base change. We have generated single constructs containing ABE or CBE editing machinery, an sgRNA cloning backbone and an enhanced green fluorescent protein tag (EGFP), removing the need for co-transfection of multiple plasmids. We have tested our ranking system and new plasmid constructs to engineer the p53 mutants Y220C, R282W and R248Q into WT p53 cells and shown that these mutants cannot activate four p53 target genes, mimicking the behaviour of endogenous p53 mutations. This field will continue to rapidly progress, requiring new strategies such as we propose to ensure desired base-editing outcomes.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Cell Line , Adenine/metabolism , Cytosine/metabolism
3.
Respir Res ; 23(1): 227, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36056356

ABSTRACT

BACKGROUND: Despite the well-known detrimental effects of cigarette smoke (CS), little is known about the complex gene expression dynamics in the early stages after exposure. This study aims to investigate early transcriptomic responses following CS exposure of airway epithelial cells in culture and compare these to those found in human CS exposure studies. METHODS: Primary bronchial epithelial cells (PBEC) were differentiated at the air-liquid interface (ALI) and exposed to whole CS. Bulk RNA-sequencing was performed at 1 h, 4 h, and 24 h hereafter, followed by differential gene expression analysis. Results were additionally compared to data retrieved from human CS studies. RESULTS: ALI-PBEC gene expression in response to CS was most significantly changed at 4 h after exposure. Early transcriptomic changes (1 h, 4 h post CS exposure) were related to oxidative stress, xenobiotic metabolism, higher expression of immediate early genes and pro-inflammatory pathways (i.e., Nrf2, AP-1, AhR). At 24 h, ferroptosis-associated genes were significantly increased, whereas PRKN, involved in removing dysfunctional mitochondria, was downregulated. Importantly, the transcriptome dynamics of the current study mirrored in-vivo human studies of acute CS exposure, chronic smokers, and inversely mirrored smoking cessation. CONCLUSION: These findings show that early after CS exposure xenobiotic metabolism and pro-inflammatory pathways were activated, followed by activation of the ferroptosis-related cell death pathway. Moreover, significant overlap between these transcriptomic responses in the in-vitro model and human in-vivo studies was found, with an early response of ciliated cells. These results provide validation for the use of ALI-PBEC cultures to study the human lung epithelial response to inhaled toxicants.


Subject(s)
Cigarette Smoking , Xenobiotics , Bronchi/metabolism , Cigarette Smoking/adverse effects , Cigarette Smoking/genetics , Epithelial Cells/metabolism , Humans , Mucous Membrane , Nicotiana , Xenobiotics/metabolism , Xenobiotics/pharmacology
4.
Am J Respir Crit Care Med ; 206(6): 712-729, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35549656

ABSTRACT

Rationale: Patients with chronic obstructive pulmonary disease (COPD) develop more severe coronavirus disease (COVID-19); however, it is unclear whether they are more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and what mechanisms are responsible for severe disease. Objectives: To determine whether SARS-CoV-2 inoculated primary bronchial epithelial cells (pBECs) from patients with COPD support greater infection and elucidate the effects and mechanisms involved. Methods: We performed single-cell RNA sequencing analysis on differentiated pBECs from healthy subjects and patients with COPD 7 days after SARS-CoV-2 inoculation. We correlated changes with viral titers, proinflammatory responses, and IFN production. Measurements and Main Results: Single-cell RNA sequencing revealed that COPD pBECs had 24-fold greater infection than healthy cells, which was supported by plaque assays. Club/goblet and basal cells were the predominant populations infected and expressed mRNAs involved in viral replication. Proteases involved in SARS-CoV-2 entry/infection (TMPRSS2 and CTSB) were increased, and protease inhibitors (serpins) were downregulated more so in COPD. Inflammatory cytokines linked to COPD exacerbations and severe COVID-19 were increased, whereas IFN responses were blunted. Coexpression analysis revealed a prominent population of club/goblet cells with high type 1/2 IFN responses that were important drivers of immune responses to infection in both healthy and COPD pBECs. Therapeutic inhibition of proteases and inflammatory imbalances reduced viral titers and cytokine responses, particularly in COPD pBECs. Conclusions: COPD pBECs are more susceptible to SARS-CoV-2 infection because of increases in coreceptor expression and protease imbalances and have greater inflammatory responses. A prominent cluster of IFN-responsive club/goblet cells emerges during infection, which may be important drivers of immunity. Therapeutic interventions suppress SARS-CoV-2 replication and consequent inflammation.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Serpins , Cytokines , Epithelial Cells , Humans , Peptide Hydrolases , Pulmonary Disease, Chronic Obstructive/drug therapy , SARS-CoV-2 , Sequence Analysis, RNA , Serpins/pharmacology , Serpins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...