Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38068981

ABSTRACT

CRISPR (short for "Clustered Regularly Interspaced Short Palindromic Repeats") is a technology that research scientists use to selectively modify the DNA of living organisms. CRISPR was adapted for use in the laboratory from the naturally occurring genome-editing systems found in bacteria. In this work, we reviewed the methods used to introduce CRISPR/Cas-mediated genome editing into fruit species, as well as the impacts of the application of this technology to activate and knock out target genes in different fruit tree species, including on tree development, yield, fruit quality, and tolerance to biotic and abiotic stresses. The application of this gene-editing technology could allow the development of new generations of fruit crops with improved traits by targeting different genetic segments or even could facilitate the introduction of traits into elite cultivars without changing other traits. However, currently, the scarcity of efficient regeneration and transformation protocols in some species, the fact that many of those procedures are genotype-dependent, and the convenience of segregating the transgenic parts of the CRISPR system represent the main handicaps limiting the potential of genetic editing techniques for fruit trees. Finally, the latest news on the legislation and regulations about the use of plants modified using CRISPR/Cas systems has been also discussed.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , CRISPR-Cas Systems/genetics , Trees/genetics , Fruit/genetics , Plant Breeding/methods , Crops, Agricultural/genetics , Genome, Plant
2.
Plants (Basel) ; 12(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36840120

ABSTRACT

Water scarcity is one of the greatest concerns for agronomy worldwide. In recent years, many water resources have been depleted due to multiple factors, especially mismanagement. Water resource shortages lead to cropland expansion, which likely influences climate change and affects global agriculture, especially horticultural crops. Fruit yield is the final aim in commercial orchards; however, drought can slow tree growth and/or decrease fruit yield and quality. It is therefore necessary to find approaches to solve this problem. The main objective of this review is to discuss the most recent horticultural, biochemical, and molecular strategies adopted to improve the response of temperate fruit crops to water stress. We also address the viability of cultivating fruit trees in dry areas and provide precise protection methods for planting fruit trees in arid lands. We review the main factors involved in planting fruit trees in dry areas, including plant material selection, regulated deficit irrigation (DI) strategies, rainwater harvesting (RWH), and anti-water stress materials. We also provide a detailed analysis of the molecular strategies developed to combat drought, such as Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) through gene overexpression or gene silencing. Finally, we look at the molecular mechanisms associated with the contribution of the microbiome to improving plant responses to drought.

3.
Plant Physiol Biochem ; 194: 722-730, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36577196

ABSTRACT

Lavandula stoechas L. (LS) is an aromatic evergreen herb used broadly in the food, pharmaceutical, and perfume industries. However, the inducer effect of elicitors on secondary metabolites (SMs) biosynthesis in LS is nebulous. In addition, the precise mechanism of elicitors in cells remains unexplored. Hence, the primary objective of this study was to analyze the changes in phytochemical compositions of LSs treated with a biotic elicitor (chitin) and an abiotic one (copper nanoparticle) under in vitro and greenhouse conditions, with the aim of choosing an appropriate elicitor type, concentration, and exposure time for this species. In this study, the biochemical function of four chitin concentrations (i.e. 0, 50, 100 & 200 mg L-1) and four copper oxide nanoparticle concentrations (i.e. 0, 25, 50, & 100 mg L-1) at two exposure times (i.e. 5 & 10 days) was investigated in LS so as to compare with the un-elicited explants and the original plant materials. The analysis showed that the highest contents of the total phenolic (4.68 mg g-1 FW), flavonoids (0.68 mg g-1 FW), anthocyanins (36.51 mg g-1 FW), and flavonols (0.29 mg g-1 FW) compounds were observed in the elicited LSs. Besides, the role of elicitors in augmenting the percentage of SMs was intelligible, especially 'lavandulol', '1,8-cineole', 'germacrene D', and '(E)-nerolidol', which increased by 21.68%, 17.21%, 9.33%, and 8.11%, respectively. In conclusion, these findings indicate that utilizing elicitors at optimal concentrations and with timely durations of exposure can largely assist in improving the biotechnological production of SMs in LS, so that their potential for industrial use can be actualized.


Subject(s)
Lavandula , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Lavandula/chemistry , Copper , Anthocyanins , Phytochemicals
4.
Int J Mol Sci ; 23(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36362061

ABSTRACT

Mutation is a source of genetic diversity widely used in breeding programs for the acquisition of agronomically interesting characters in commercial varieties of the Prunus species, as well as in the rest of crop species. Mutation can occur in nature at a very low frequency or can be induced artificially. Spontaneous or bud sport mutations in somatic cells can be vegetatively propagated to get an individual with the mutant phenotype. Unlike animals, plants have unlimited growth and totipotent cells that let somatic mutations to be transmitted to the progeny. On the other hand, in vitro tissue culture makes it possible to induce mutation in plant material and perform large screenings for mutant's selection and cleaning of chimeras. Finally, targeted mutagenesis has been boosted by the application of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 and Transcription activator-like effector nuclease (TALEN) editing technologies. Over the last few decades, environmental stressors such as global warming have been threatening the supply of global demand for food based on population growth in the near future. For this purpose, the release of new varieties adapted to such changes is a requisite, and selected or generated Prunus mutants by properly regulated mechanisms could be helpful to this task. In this work, we reviewed the most relevant mutations for breeding traits in Prunus species such as flowering time, self-compatibility, fruit quality, and disease tolerance, including new molecular perspectives in the present postgenomic era including CRISPR/Cas9 and TALEN editing technologies.


Subject(s)
Gene Editing , Prunus , Animals , CRISPR-Cas Systems/genetics , Transcription Activator-Like Effector Nucleases/genetics , Prunus/genetics , Prunus/metabolism , Plant Breeding , Mutation , Endonucleases/metabolism , Genome, Plant
SELECTION OF CITATIONS
SEARCH DETAIL
...