Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 11(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36140002

ABSTRACT

Uropathogenic Escherichia coli has a propensity to build biofilms to resist host defense and antimicrobials. Recurrent urinary tract infection (UTI) caused by multidrug-resistant, biofilm-forming E. coli is a significant public health problem. Consequently, searching for alternative medications has become essential. This study was undertaken to investigate the antibacterial, synergistic, and antibiofilm activities of catechin isolated from Canarium patentinervium Miq. against three E. coli ATCC reference strains (ATCC 25922, ATCC 8739, and ATCC 43895) and fifteen clinical isolates collected from UTI patients in Baghdad, Iraq. In addition, the expression of the biofilm-related gene, acrA, was evaluated with and without catechin treatment. Molecular docking was performed to evaluate the binding mode between catechin and the target protein using Autodock Vina 1.2.0 software. Catechin demonstrated significant bactericidal activity with a minimum inhibitory concentration (MIC) range of 1-2 mg/mL and a minimum bactericidal concentration (MBC) range of 2-4 mg/mL and strong synergy when combined with tetracycline at the MBC value. In addition, catechin substantially reduced E. coli biofilm by downregulating the acrA gene with a reduction percent ≥ 60%. In silico analysis revealed that catechin bound with high affinity (∆G = -8.2 kcal/mol) to AcrB protein (PDB-ID: 5ENT), one of the key AcrAB-TolC efflux pump proteins suggesting that catechin might inhibit the acrA gene indirectly by docking at the active site of AcrB protein.

2.
Front Pharmacol ; 12: 785964, 2021.
Article in English | MEDLINE | ID: mdl-34966281

ABSTRACT

Aim: The present study aimed to investigate huperzine A as an anti-Alzheimer agent based on the principle that a single compound can regulate multiple proteins and associated pathways, using system biology tools. Methodology: The simplified molecular-input line-entry system of huperzine A was retrieved from the PubChem database, and its targets were predicted using SwissTargetPrediction. These targets were matched with the proteins deposited in DisGeNET for Alzheimer disease and enriched in STRING to identify the probably regulated pathways, cellular components, biological processes, and molecular function. Furthermore, huperzine A was docked against acetylcholinesterase using AutoDock Vina, and simulations were performed with the Gromacs package to take into account the dynamics of the system and its effect on the stability and function of the ligands. Results: A total of 100 targets were predicted to be targeted by huperzine A, of which 42 were regulated at a minimum probability of 0.05. Similarly, 101 Kyoto Encyclopedia of Genes and Genomes pathways were triggered, in which neuroactive ligand-receptor interactions scored the least false discovery rate. Also, huperzine A was predicted to modulate 54 cellular components, 120 molecular functions, and 873 biological processes. Furthermore, huperzine A possessed a binding affinity of -8.7 kcal/mol with AChE and interacted within the active site of AChE via H-bonds and hydrophobic interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...