Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dent Mater ; 35(7): 990-1006, 2019 07.
Article in English | MEDLINE | ID: mdl-31027908

ABSTRACT

OBJECTIVE: Design of bioactive scaffolds with osteogenic capacity is a central challenge in cell-based patient-specific bone tissue engineering. Efficient and spatially uniform seeding of (stem) cells onto such constructs is vital to attain functional tissues. Herein we developed heparin functionalized collagen gels supported by 3D printed bioceramic scaffolds, as bone extracellular matrix (ECM)-mimetic matrices. These matrices were designed to enhance cell seeding efficiency of mesenchymal stem cells (MSCs) as well as improve their osteogenic differentiation through immobilized bone morphogenic protein 2 (BMP2) to be used for personalized bone regeneration. METHODS: A 3D gel based on heparin-conjugated collagen matrix capable of immobilizing recombinant human bone morphogenic protein 2 (BMP2) was synthesized. Isolated dental pulp Mesenchymal stem cells (MSCs) were then encapsulated into the bone ECM microenvironment to efficiently and uniformly seed a bioactive ceramic-based scaffold fabricated using additive manufacturing technique. The designed 3D cell-laden constructs were comprehensively investigated trough in vitro assays and in vivo study. RESULTS: In-depth rheological characterizations of heparin-conjugated collagen gel revealed that elasticity of the matrix is significantly improved compared with freely incorporated heparin. Investigation of the MSCs laden collagen-heparin hydrogels revealed their capability to provide spatiotemporal bioavailability of BMP2 while suppressing the matrix contraction over time. The in vivo histology and real-time polymerase chain reaction (qPCR) analysis showed that the designed construct supported the osteogenic differentiation of MSCs and induced the ectopic bone formation in rat model. SIGNIFICANCE: The presented hybrid constructs combine bone ECM chemical cues with mechanical function providing an ideal 3D microenvironment for patient-specific bone tissue engineering and cell therapy applications. The implemented methodology in design of ECM-mimetic 3D matrix capable of immobilizing BMP2 to improve seeding efficiency of customized scaffolds can be exploited for other bioactive molecules.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Animals , Bone Morphogenetic Protein 2 , Cell Differentiation , Extracellular Matrix , Humans , Printing, Three-Dimensional , Rats , Tissue Engineering , Tissue Scaffolds
2.
Biopolymers ; 107(1): 5-19, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27588722

ABSTRACT

Chitosan biopolymer has been extensively applied in direct methanol fuel cells (DMFCs) as a potential replacement to conventional Nafion membrane for its considerably reduced methanol crossover. Here, we computationally explored the influences of methanol concentration, temperature, and pH parameters upon the nanostructure and dynamics, particularly the methanol crossover, in chitosan proton-exchange membrane (PEM) through molecular dynamics simulations. Theoretical results demonstrated the increased swelling and radius of gyration of chitosan chains at higher concentrations. Structural examinations further revealed that an increase in methanol loading weakened the water interactions with chitosan functionalities (amineNH2 , hydroxylOH, and methoxyCH2 OH) whereas improved the methanol affinities toward chitosan, reflecting higher methanol sorption capability of chitosan at enhanced concentrations. Additionally, it was found that interactions between solvents and chitosan strengthened under acidic pH conditions on account of amine protonation. The water diffusivity inside the swollen chitosan diminished by increasing CH3 OH uptake, and in contrast diffusivity of methanol was noted to enhance. Furthermore, it was observed that an enhancement in temperature or a decrease in pH intensified solvent mobility. These insights imply that supplying methanol-concentrated and/or acidic feed solutions into DMFCs based on chitosan PEMs could lower membrane performance due to the significant methanol transport dynamics.


Subject(s)
Chitosan/chemistry , Molecular Dynamics Simulation , Diffusion , Hydrogen Bonding , Hydrogen-Ion Concentration , Methanol/chemistry , Protons , Temperature , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...