Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0304141, 2024.
Article in English | MEDLINE | ID: mdl-38843250

ABSTRACT

Lynch syndrome is caused by inactivating variants in DNA mismatch repair genes, namely MLH1, MSH2, MSH6 and PMS2. We have investigated five MLH1 and one MSH2 variants that we have identified in Turkish and Tunisian colorectal cancer patients. These variants comprised two small deletions causing frameshifts resulting in premature stops which could be classified pathogenic (MLH1 p.(His727Profs*57) and MSH2 p.(Thr788Asnfs*11)), but also two missense variants (MLH1 p.(Asn338Ser) and p.(Gly181Ser)) and two small, in-frame deletion variants (p.(Val647-Leu650del) and p.(Lys678_Cys680del)). For such small coding genetic variants, it is unclear if they are inactivating or not. We here provide clinical description of the variant carriers and their families, and we performed biochemical laboratory testing on the variant proteins to test if their stability or their MMR activity are compromised. Subsequently, we compared the results to in-silico predictions on structure and conservation. We demonstrate that neither missense alteration affected function, while both deletion variants caused a dramatic instability of the MLH1 protein, resulting in MMR deficiency. These results were consistent with the structural analyses that were performed. The study shows that knowledge of protein function may provide molecular explanations of results obtained with functional biochemical testing and can thereby, in conjunction with clinical information, elevate the evidential value and facilitate clinical management in affected families.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , DNA Mismatch Repair , MutL Protein Homolog 1 , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Humans , Male , MutL Protein Homolog 1/genetics , Female , DNA Mismatch Repair/genetics , Middle Aged , MutS Homolog 2 Protein/genetics , Adult , Tunisia , Pedigree , Turkey , Aged , Mutation, Missense
2.
World J Clin Cases ; 12(3): 503-516, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38322471

ABSTRACT

BACKGROUND: Angelman syndrome (AS) is caused by maternal chromosomal deletions, imprinting defects, paternal uniparental disomy involving chromosome 15 and the ubiquitin-protein ligase UBE3A gene mutations. However the genetic basis remains unclear for several patients. AIM: To investigate the involvement of UBE3A gene in AS and identifying new potential genes using exome sequencing. METHODS: We established a cohort study in 50 patients referred to Farhat Hached University Hospital between 2006 and 2021, with a strong suspicion of AS and absence of chromosomal aberrations. The UBE3A gene was screened for mutation detection. Two unrelated patients issued from consanguineous families were subjected to exome analysis. RESULTS: We describe seven UBE3A variants among them 3 none previously described including intronic variants c.2220+14T>C (intron14), c.2507+43T>A (Exon15) and insertion in Exon7: c.30-47_30-46. The exome sequencing revealed 22 potential genes that could be involved in AS-like syndromes that should be investigated further. CONCLUSION: Screening for UBE3A mutations in AS patients has been proven to be useful to confirm the diagnosis. Our exome findings could rise to new potential alternative target genes for genetic counseling.

3.
PLoS One ; 17(12): e0278283, 2022.
Article in English | MEDLINE | ID: mdl-36454741

ABSTRACT

Lynch syndrome is a heritable condition caused by a heterozygous germline inactivating mutation of the DNA mismatch repair (MMR) genes, most commonly the MLH1 gene. However, one third of the identified alterations are missense variants, for which the clinical significance is unclear in many cases. We have identified three MLH1 missense alterations (p.(Glu736Lys), p.(Pro640Thr) and p.(Leu73Pro)) in six individuals from large Tunisian families. For none of these alterations, a classification of pathogenicity was available, consequently diagnosis, predictive testing and targeted surveillance in affected families was impossible. We therefore performed functional laboratory testing using a system testing stability as well as catalytic activity that includes clinically validated reference variants. Both p.(Leu73Pro) and p.(Pro640Thr) were found to be non-functional due to severe defects in protein stability and catalytic activity. In contrast, p.(Glu736Lys) was comparable to the wildtype protein and therefore considered a neutral substitution. Analysis of residue conservation and of the structural roles of the substituted residues corroborated these findings. In conjunction with the available clinical data, two variants fulfil classification criteria for class 4 "likely pathogenic". The findings of this work clarify the mechanism of pathogenicity of two unclear MLH1 variants and enables predictive testing and targeted surveillance in members of carrier families worldwide.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Mutation, Missense , Humans , Virulence , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Mismatch Repair , Germ-Line Mutation , MutL Protein Homolog 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...