Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Numer Method Biomed Eng ; 40(5): e3816, 2024 May.
Article in English | MEDLINE | ID: mdl-38523567

ABSTRACT

Alzheimer's disease (AD) levels have increased globally, which is considered the sixth reason for deaths. So, a requirement exists for economic and quantitative methods to follow up the gradual progression of AD. The current study presents a simulation for a non-irradiated, safe, wearable, and noninvasive mobile approach for detecting the progression of Alzheimer's brain atrophy using the optical diffusion technique and for investigating the difference between the normal and the diseased brain. The virtual study was accomplished using COMSOL Multiphysics. The simulated head is implemented as the following: scalp, skull, cerebrospinal fluid, gray matter, and white matter. The optical properties of the heterogeneous tissue are observed using the fluence rate after irradiating the head with different wavelengths (630, 700, 810, 915, and 1000 nm) of lasers. Two assessment techniques were applied to evaluate the brain atrophy measurements; the first technique was an array of photodetectors, which were lined at the head posterior, while a matrix of photodetectors was applied over the head surface in the second technique. The results show that the surface photodetectors approach differentiates the normal from AD brains without measuring the brain atrophy percentages by applying 630 nm. The array of photodetectors distinguishes normal from AD brains without detecting the brain atrophy percentages when the wavelengths 630, 700, and 810 nm were applied. The line detector at 1000 nm evaluates the brain atrophy percentages with AD. The future explores applying those techniques in vivo and analyzing the information by the spectrometer for extensively safer early detection of neural disorders.


Subject(s)
Alzheimer Disease , Disease Progression , Lasers , Humans , Brain/pathology , Atrophy , Gray Matter/pathology
2.
Photobiomodul Photomed Laser Surg ; 41(3): 125-132, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36927048

ABSTRACT

Objective: This article investigates the effect of varying breast tumor size on the fluence rate distribution within a breast model during the diffuse optical imaging procedure. Background: Early detection of breast cancer is of significant importance owing to its wide spread among women worldwide. Mastectomy surgery became very common due to the late detection of breast cancers by the conventional diagnostic methods such as X-ray mammography and magnetic resonance imaging. On the contrary, optical imaging techniques provide a safe and more sensitive methodology, which is suitable for the early detection criteria. Methods: The implementation was performed based on simulating multiple detectors placed on the outer surface of a human breast model to compute the optical fluence rate after probing the breast (normal and different tumor sizes) with laser irradiation. Different laser wavelengths ranging from the red to near-infrared rays spectral range were examined to determine the optimum fluence rate that shows the highest capability to differentiate between normal and cancerous breasts. A three-dimensional breast model was created using the COMSOL multiphysics package where the optical fluence rate was estimated based on the finite-element solution of the diffusion equation. Results: To evaluate the efficiency of the suggested technique for identifying cancers and discriminate them from normal breast at various wavelengths (600-1000 nm) and several tumor sizes. Conclusions: The obtained results reveal different fluence rate distributions in the breast with different radius tumors, especially at 600 nm due to the significant differences in the scattering coefficient between malignancies and healthy tissue.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Tumor Burden , Mastectomy , Magnetic Resonance Imaging , Lasers
3.
J Opt Soc Am A Opt Image Sci Vis ; 39(4): 587-593, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35471381

ABSTRACT

The present study provides a noninvasive, safe approach for brain tumor detection by numerically analyzing the optical fluence rate at the scalp. The proposed numerical investigation demonstrates the application of different laser wavelengths for identifying different types and volumes of brain tumors (glioma "grade II astrocytoma" and meningioma). The proposed method analyzes the spatial fluence rate distribution over the surface of the head after probing it with different infrared laser wavelengths (1000 and 1100 nm) to distinguish between normal and brain tumors. A multilayer head model is created with COMSOL Multiphysics 5.4 simulation software, where the Helmholtz equation is solved using a finite element method to visualize the optical fluence rate at the model's surface. The resultant fluence rate images show different features between normal brain and brain tumors, especially at 1000 nm.


Subject(s)
Brain Neoplasms , Scalp , Brain , Brain Neoplasms/diagnostic imaging , Computer Simulation , Humans , Lasers
4.
Lasers Med Sci ; 37(3): 1855-1864, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34651256

ABSTRACT

Breast tumors are among the most common types of tumors that can affect both genders. It may spread to the whole breast without any symptoms. Therefore, the early detection and accurate diagnosis of breast tumors are significantly important. Current approaches for breast cancer screening such as positron emission tomography (PET) and magnetic resonance imaging (MRI) have some limitations of being time and money-consuming. In addition, mammography screening is not recommended for women under forty. Consequently, optical techniques have been introduced as safe and functional alternatives. Diffuse optical imaging is a non-invasive imaging technique that utilizes near-infrared light to examine biological tissues based on measuring the optical transmission and/or reflection at various locations on the tissue surface. In this paper, we propose a modified arrangement between the laser source and the detectors for distinguishing tumors from normal breast tissue. A three-dimensional model of the normal human breast with three types of tumors is developed using a COMSOL simulation software based on the finite element solution of Helmholtz equation to estimate optical fluence distribution. The breast model consists of four layers: skin, fat, glandular, and muscle, where the tumor is included in the glandular layer. Different wavelengths were used to determine the most proper wavelength for the discrimination between the normal tissue and tumor. The obtained results were verified using the receiver operating characteristic (ROC) method. The resultant fluence images show different features between normal breast and breast with tumor especially using 600-nm incident laser as demonstrated by the obtained ROC curves.


Subject(s)
Breast Neoplasms , Breast , Breast/diagnostic imaging , Breast/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Humans , Male , Mammography , Optical Imaging , Positron-Emission Tomography
SELECTION OF CITATIONS
SEARCH DETAIL
...