Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Dis ; 10(2): 468-479, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37223518

ABSTRACT

Genetic compensation is a remarkable biological concept to explain the genetic robustness in an organism to maintain its fitness and viability if there is a disruption occurred in the genetic variation by mutation. However, the underlying mechanism in genetic compensation remain unsolvable. The initial concept of genetic compensation has been studied in model organisms when there was a discrepancy between knockout-mediated and knockdown-mediated phenotypes. In the zebrafish model, several studies have reported that zebrafish mutants did not exhibit severe phenotype as shown in zebrafish morphants for the same genes. This phenomenon in zebrafish mutants but not morphants is due to the response of genetic compensation. In 2019, two amazing works partially uncovered genetic compensation could be triggered by the upregulation of compensating genes through regulating NMD and/or PTC-bearing mRNA in collaboration with epigenetic machinery in mutant zebrafish. In this review, we would like to update the recent advances and future perspectives of genetic compensation studies, which including the hypothesis of time-dependent involvement and addressing the discrepancy between knockout-mediated and knockdown-mediated to study gene function in the zebrafish model. At last, the study of genetic compensation could be a potential therapeutic strategy to treat human genetic disorder related diseases.

2.
iScience ; 24(11): 103386, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34816109

ABSTRACT

The differentiation of lymphatic progenitors is a crucial step in lymphangiogenesis. However, its underlying mechanism remains unclear. Here, we found that noncanonical protease-activated receptor 1 (par1) regulates the differentiation of lymphatic progenitors in zebrafish embryos. Loss of par1 function impaired lymphatic differentiation by downregulating prox1a expression in parachordal lymphangioblasts and caused compromised thoracic duct formation in zebrafish. Meanwhile, the G protein gnai2a, a par1 downstream effector, was selectively required for lymphatic development in zebrafish, and its mutation mimicked the lymphatic phenotype observed in par1 mutants. Interestingly, mmp13, but not thrombin, was required for lymphatic development in zebrafish. Furthermore, analyses of genetic interactions confirmed that mmp13b serves as a par1 upstream protease to regulate lymphatic development in zebrafish embryos. Mechanistically, par1 promotes flt4 expression and phospho-Erk1/2 activity in the posterior cardinal vein. Taken together, our findings highlight a function of par1 in the regulation of lymphatic differentiation in zebrafish embryos.

3.
Clin Biomech (Bristol, Avon) ; 88: 105417, 2021 08.
Article in English | MEDLINE | ID: mdl-34246943

ABSTRACT

Arteriovenous malformations are congenital vascular lesions characterized by a direct and tangled connection between arteries and veins, which disrupts oxygen circulation and normal blood flow. Arteriovenous malformations often occur in the patient with hereditary hemorrhagic telangiectasia. The attempts to elucidate the causative factors and pathogenic mechanisms of arteriovenous malformations are now still in progress. Some studies reported that shear stress in blood flow is one of the factors involved in arteriovenous malformations manifestation. Through several mechanotransducers harboring the endothelial cells membrane, the signal from shear stress is transduced towards the responsible signaling pathways in endothelial cells to maintain cell homeostasis. Any disruption in this well-established communication will give rise to abnormal endothelial cells differentiation and specification, which will later promote arteriovenous malformations. In this review, we discuss the update of several mechanotransducers that have essential roles in shear stress-induced signaling pathways, such as activin receptor-like kinase 1, Endoglin, Notch, vascular endothelial growth factor receptor 2, Caveolin-1, Connexin37, and Connexin40. Any disruption of these signaling potentially causes arteriovenous malformations. We also present some recent insights into the fundamental analysis, which attempts to determine potential and alternative solutions to battle arteriovenous malformations, especially in a less invasive and risky way, such as gene treatments.


Subject(s)
Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Endothelial Cells , Humans , Signal Transduction , Vascular Endothelial Growth Factor A
SELECTION OF CITATIONS
SEARCH DETAIL
...