Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Clin Transl Sci ; 7(1): e175, 2023.
Article in English | MEDLINE | ID: mdl-37745933

ABSTRACT

Introduction: With persistent incidence, incomplete vaccination rates, confounding respiratory illnesses, and few therapeutic interventions available, COVID-19 continues to be a burden on the pediatric population. During a surge, it is difficult for hospitals to direct limited healthcare resources effectively. While the overwhelming majority of pediatric infections are mild, there have been life-threatening exceptions that illuminated the need to proactively identify pediatric patients at risk of severe COVID-19 and other respiratory infectious diseases. However, a nationwide capability for developing validated computational tools to identify pediatric patients at risk using real-world data does not exist. Methods: HHS ASPR BARDA sought, through the power of competition in a challenge, to create computational models to address two clinically important questions using the National COVID Cohort Collaborative: (1) Of pediatric patients who test positive for COVID-19 in an outpatient setting, who are at risk for hospitalization? (2) Of pediatric patients who test positive for COVID-19 and are hospitalized, who are at risk for needing mechanical ventilation or cardiovascular interventions? Results: This challenge was the first, multi-agency, coordinated computational challenge carried out by the federal government as a response to a public health emergency. Fifty-five computational models were evaluated across both tasks and two winners and three honorable mentions were selected. Conclusion: This challenge serves as a framework for how the government, research communities, and large data repositories can be brought together to source solutions when resources are strapped during a pandemic.

2.
Infect Dis Ther ; 12(2): 607-621, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36629998

ABSTRACT

INTRODUCTION: Sotrovimab, a recombinant human monoclonal antibody (mAb) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had US Food and Drug Administration Emergency Use Authorization for the treatment of high-risk outpatients with mild-to-moderate coronavirus disease 2019 (COVID-19) from 26 May 2021 to 5 April 2022. Real-world clinical effectiveness of sotrovimab in reducing the risk of 30-day all-cause hospitalization and/or mortality was evaluated for the period when the prevalence of circulating SARS-CoV-2 variants changed between Delta and Omicron in the USA. METHODS: A retrospective analysis was conducted of de-identified patients diagnosed with COVID-19 between 1 September 2021 to 30 April 2022 in the FAIR Health National Private Insurance Claims database. Patients meeting high-risk criteria were divided into two cohorts: sotrovimab and not treated with a mAb ("no mAb"). All-cause hospitalizations and facility-reported mortality ≤ 30 days of diagnosis ("30-day hospitalization or mortality") were identified. Multivariable and propensity score-matched Poisson and logistic regressions were conducted to estimate the adjusted relative risk (RR) and odds of 30-day hospitalization or mortality in each cohort. RESULTS: Compared with the no mAb cohort (n = 1,514,868), the sotrovimab cohort (n = 15,633) was older and had a higher proportion of patients with high-risk conditions. In the no mAb cohort, 84,307 (5.57%) patients were hospitalized and 8167 (0.54%) deaths were identified, while in the sotrovimab cohort, 418 (2.67%) patients were hospitalized and 13 (0.08%) deaths were identified. After adjusting for potential confounders, the sotrovimab cohort had a 55% lower risk of 30-day hospitalization or mortality (RR 0.45, 95% CI 0.41-0.49) and an 85% lower risk of 30-day mortality (RR 0.15, 95% CI 0.08-0.29). Monthly, from September 2021 to April 2022, the RR reduction for 30-day hospitalization or mortality in the sotrovimab cohort was maintained, ranging from 46% to 71% compared with the no mAb cohort; the RR estimate in April 2022 was uncertain, with wide confidence intervals due to the small sample size. CONCLUSION: Sotrovimab was associated with reduced risk of 30-day all-cause hospitalization and mortality versus no mAb treatment. Clinical effectiveness persisted during Delta and early Omicron variant waves and among all high-risk subgroups assessed.

3.
Cell Rep Med ; 3(8): 100721, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35977462

ABSTRACT

Understanding who is at risk of progression to severe coronavirus disease 2019 (COVID-19) is key to clinical decision making and effective treatment. We study correlates of disease severity in the COMET-ICE clinical trial that randomized 1:1 to placebo or to sotrovimab, a monoclonal antibody for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (ClinicalTrials.gov04545060). Laboratory parameters identify study participants at greater risk of severe disease, including a high neutrophil-to-lymphocyte ratio (NLR), a negative SARS-CoV-2 serologic test, and whole-blood transcriptome profiles. Sotrovimab treatment is associated with normalization of NLR and the transcriptomic profile and with a decrease of viral RNA in nasopharyngeal samples. Transcriptomics provides the most sensitive detection of participants who would go on to be hospitalized or die. To facilitate timely measurement, we identify a 10-gene signature with similar predictive accuracy. We identify markers of risk for disease progression and demonstrate that normalization of these parameters occurs with antibody treatment of established infection.


Subject(s)
COVID-19 Drug Treatment , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Humans , RNA, Viral , SARS-CoV-2
4.
Sci Transl Med ; 14(633): eabk3445, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35014856

ABSTRACT

SARS-CoV-2 evolution threatens vaccine- and natural infection-derived immunity as well as the efficacy of therapeutic antibodies. To improve public health preparedness, we sought to predict which existing amino acid mutations in SARS-CoV-2 might contribute to future variants of concern. We tested the predictive value of features comprising epidemiology, evolution, immunology, and neural network-based protein sequence modeling, and identified primary biological drivers of SARS-CoV-2 intra-pandemic evolution. We found evidence that ACE2-mediated transmissibility and resistance to population-level host immunity has waxed and waned as a primary driver of SARS-CoV-2 evolution over time. We retroactively identified with high accuracy (area under the receiver operator characteristic curve, AUROC=0.92-0.97) mutations that will spread, at up to four months in advance, across different phases of the pandemic. The behavior of the model was consistent with a plausible causal structure wherein epidemiological covariates combine the effects of diverse and shifting drivers of viral fitness. We applied our model to forecast mutations that will spread in the future and characterize how these mutations affect the binding of therapeutic antibodies. These findings demonstrate that it is possible to forecast the driver mutations that could appear in emerging SARS-CoV-2 variants of concern. We validate this result against Omicron, showing elevated predictive scores for its component mutations prior to emergence, and rapid score increase across daily forecasts during emergence. This modeling approach may be applied to any rapidly evolving pathogens with sufficiently dense genomic surveillance data, such as influenza, and unknown future pandemic viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/virology , Humans , Mutation , Pandemics , SARS-CoV-2/genetics
5.
J Comput Chem ; 43(1): 74-78, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34709663

ABSTRACT

The conversion of proteins between internal and cartesian coordinates is a limiting step in many pipelines, such as molecular dynamics simulations and machine learning models. This conversion is typically carried out by sequential or parallel applications of the Natural extension of Reference Frame (NeRF) algorithm. This work proposes a massively parallel NeRF implementation which, depending on the polymer length, achieves speedups between 400 and 1200× over the previous state-of-the-art. It accomplishes this by dividing the conversion into three main phases: parallel composition of the monomer backbone, assembly of backbone subunits, and parallel elongation of sidechains; and by batching these computations into a minimal number of efficient matrix operations. Special emphasis is placed on reusability and ease of use. We open source the code (available at https://github.com/EleutherAI/mp_nerf) and provide a corresponding python package.

6.
Proc Natl Acad Sci U S A ; 114(38): 10166-10171, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28874526

ABSTRACT

Prediction of human physical traits and demographic information from genomic data challenges privacy and data deidentification in personalized medicine. To explore the current capabilities of phenotype-based genomic identification, we applied whole-genome sequencing, detailed phenotyping, and statistical modeling to predict biometric traits in a cohort of 1,061 participants of diverse ancestry. Individually, for a large fraction of the traits, their predictive accuracy beyond ancestry and demographic information is limited. However, we have developed a maximum entropy algorithm that integrates multiple predictions to determine which genomic samples and phenotype measurements originate from the same person. Using this algorithm, we have reidentified an average of >8 of 10 held-out individuals in an ethnically mixed cohort and an average of 5 of either 10 African Americans or 10 Europeans. This work challenges current conceptions of personal privacy and may have far-reaching ethical and legal implications.


Subject(s)
Confidentiality , DNA Fingerprinting , Models, Genetic , Phenotype , Whole Genome Sequencing , Adult , Age Factors , Algorithms , Body Size , Cohort Studies , Data Anonymization , Female , Humans , Male , Middle Aged , Pigmentation/genetics , Young Adult
7.
Proc Natl Acad Sci U S A ; 113(46): 13081-13086, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27799563

ABSTRACT

In temperate countries, influenza outbreaks are well correlated to seasonal changes in temperature and absolute humidity. However, tropical countries have much weaker annual climate cycles, and outbreaks show less seasonality and are more difficult to explain with environmental correlations. Here, we use convergent cross mapping, a robust test for causality that does not require correlation, to test alternative hypotheses about the global environmental drivers of influenza outbreaks from country-level epidemic time series. By moving beyond correlation, we show that despite the apparent differences in outbreak patterns between temperate and tropical countries, absolute humidity and, to a lesser extent, temperature drive influenza outbreaks globally. We also find a hypothesized U-shaped relationship between absolute humidity and influenza that is predicted by theory and experiment, but hitherto has not been documented at the population level. The balance between positive and negative effects of absolute humidity appears to be mediated by temperature, and the analysis reveals a key threshold around 75 °F. The results indicate a unified explanation for environmental drivers of influenza that applies globally.


Subject(s)
Disease Outbreaks , Influenza, Human/epidemiology , Humans , Humidity , Seasons , Temperature
8.
PeerJ ; 3: e824, 2015.
Article in English | MEDLINE | ID: mdl-25780776

ABSTRACT

Background. Establishing health-related causal relationships is a central pursuit in biomedical research. Yet, the interdependent non-linearity of biological systems renders causal dynamics laborious and at times impractical to disentangle. This pursuit is further impeded by the dearth of time series that are sufficiently long to observe and understand recurrent patterns of flux. However, as data generation costs plummet and technologies like wearable devices democratize data collection, we anticipate a coming surge in the availability of biomedically-relevant time series data. Given the life-saving potential of these burgeoning resources, it is critical to invest in the development of open source software tools that are capable of drawing meaningful insight from vast amounts of time series data. Results. Here we present CauseMap, the first open source implementation of convergent cross mapping (CCM), a method for establishing causality from long time series data (≳25 observations). Compared to existing time series methods, CCM has the advantage of being model-free and robust to unmeasured confounding that could otherwise induce spurious associations. CCM builds on Takens' Theorem, a well-established result from dynamical systems theory that requires only mild assumptions. This theorem allows us to reconstruct high dimensional system dynamics using a time series of only a single variable. These reconstructions can be thought of as shadows of the true causal system. If reconstructed shadows can predict points from opposing time series, we can infer that the corresponding variables are providing views of the same causal system, and so are causally related. Unlike traditional metrics, this test can establish the directionality of causation, even in the presence of feedback loops. Furthermore, since CCM can extract causal relationships from times series of, e.g., a single individual, it may be a valuable tool to personalized medicine. We implement CCM in Julia, a high-performance programming language designed for facile technical computing. Our software package, CauseMap, is platform-independent and freely available as an official Julia package. Conclusions. CauseMap is an efficient implementation of a state-of-the-art algorithm for detecting causality from time series data. We believe this tool will be a valuable resource for biomedical research and personalized medicine.

9.
G3 (Bethesda) ; 5(4): 629-38, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25711833

ABSTRACT

Ortholog detection (OD) is a lynchpin of most statistical methods in comparative genomics. This task involves accurately identifying genes across species that descend from a common ancestral sequence. OD methods comprise a wide variety of approaches, each with their own benefits and costs under a variety of evolutionary and practical scenarios. In this article, we examine the proteomes of ten mammals by using four methodologically distinct, rigorously filtered OD methods. In head-to-head comparisons, we find that these algorithms significantly outperform one another for 38-45% of the genes analyzed. We leverage this high complementarity through the development MOSAIC, or Multiple Orthologous Sequence Analysis and Integration by Cluster optimization, the first tool for integrating methodologically diverse OD methods. Relative to the four methods examined, MOSAIC more than quintuples the number of alignments for which all species are present while simultaneously maintaining or improving functional-, phylogenetic-, and sequence identity-based measures of ortholog quality. Further, this improvement in alignment quality yields more confidently aligned sites and higher levels of overall conservation, while simultaneously detecting of up to 180% more positively selected sites. We close by highlighting a MOSAIC-specific positively selected sites near the active site of TPSAB1, an enzyme linked to asthma, heart disease, and irritable bowel disease. MOSAIC alignments, source code, and full documentation are available at http://pythonhosted.org/bio-MOSAIC.


Subject(s)
Genomics/methods , User-Computer Interface , Animals , Evolution, Molecular , Humans , Internet , Sequence Alignment
10.
Mol Cell ; 57(2): 349-60, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25544563

ABSTRACT

Mapping host-pathogen interactions has proven instrumental for understanding how viruses manipulate host machinery and how numerous cellular processes are regulated. DNA viruses such as herpesviruses have relatively large coding capacity and thus can target an extensive network of cellular proteins. To identify the host proteins hijacked by this pathogen, we systematically affinity tagged and purified all 89 proteins of Kaposi's sarcoma-associated herpesvirus (KSHV) from human cells. Mass spectrometry of this material identified over 500 virus-host interactions. KSHV causes AIDS-associated cancers, and its interaction network is enriched for proteins linked to cancer and overlaps with proteins that are also targeted by HIV-1. We found that the conserved KSHV protein ORF24 binds to RNA polymerase II and brings it to viral late promoters by mimicking and replacing cellular TATA-box-binding protein (TBP). This is required for herpesviral late gene expression, a complex and poorly understood phase of the viral lifecycle.


Subject(s)
Herpesvirus 8, Human/physiology , Transcription, Genetic , Gene Expression Regulation, Viral , HEK293 Cells , Host-Pathogen Interactions , Humans , Protein Interaction Mapping , Protein Interaction Maps , RNA Polymerase II/metabolism , TATA-Box Binding Protein/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
11.
PLoS One ; 7(1): e29407, 2012.
Article in English | MEDLINE | ID: mdl-22272234

ABSTRACT

BACKGROUND: Laboratory studies have suggested that antibiotic resistance may result in decreased fitness in the bacteria that harbor it. Observational studies have supported this, but due to ethical and practical considerations, it is rare to have experimental control over antibiotic prescription rates. METHODS AND FINDINGS: We analyze data from a 54-month longitudinal trial that monitored pneumococcal drug resistance during and after biannual mass distribution of azithromycin for the elimination of the blinding eye disease, trachoma. Prescription of azithromycin and antibiotics that can create cross-resistance to it is rare in this part of the world. As a result, we were able to follow trends in resistance with minimal influence from unmeasured antibiotic use. Using these data, we fit a probabilistic disease transmission model that included two resistant strains, corresponding to the two dominant modes of resistance to macrolide antibiotics. We estimated the relative fitness of these two strains to be 0.86 (95% CI 0.80 to 0.90), and 0.88 (95% CI 0.82 to 0.93), relative to antibiotic-sensitive strains. We then used these estimates to predict that, within 5 years of the last antibiotic treatment, there would be a 95% chance of elimination of macrolide resistance by intra-species competition alone. CONCLUSIONS: Although it is quite possible that the fitness cost of macrolide resistance is sufficient to ensure its eventual elimination in the absence of antibiotic selection, this process takes time, and prevention is likely the best policy in the fight against resistance.


Subject(s)
Azithromycin/therapeutic use , Drug Resistance, Bacterial/drug effects , Pneumococcal Infections/drug therapy , Streptococcus pneumoniae/drug effects , Algorithms , Analysis of Variance , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Ethiopia/epidemiology , Genetic Association Studies/statistics & numerical data , Humans , Membrane Proteins/genetics , Microbial Viability/drug effects , Microbial Viability/genetics , Models, Genetic , Pneumococcal Infections/epidemiology , Pneumococcal Infections/microbiology , Prevalence , Streptococcus pneumoniae/genetics , Trachoma/microbiology , Trachoma/prevention & control
12.
Hum Hered ; 74(3-4): 118-28, 2012.
Article in English | MEDLINE | ID: mdl-23594490

ABSTRACT

OBJECTIVES: Identifying drivers of complex traits from the noisy signals of genetic variation obtained from high-throughput genome sequencing technologies is a central challenge faced by human geneticists today. We hypothesize that the variants involved in complex diseases are likely to exhibit non-neutral evolutionary signatures. Uncovering the evolutionary history of all variants is therefore of intrinsic interest for complex disease research. However, doing so necessitates the simultaneous elucidation of the targets of natural selection and population-specific demographic history. METHODS: Here we characterize the action of natural selection operating across complex disease categories, and use population genetic simulations to evaluate the expected patterns of genetic variation in large samples. We focus on populations that have experienced historical bottlenecks followed by explosive growth (consistent with many human populations), and describe the differences between evolutionarily deleterious mutations and those that are neutral. RESULTS: Genes associated with several complex disease categories exhibit stronger signatures of purifying selection than non-disease genes. In addition, loci identified through genome-wide association studies of complex traits also exhibit signatures consistent with being in regions recurrently targeted by purifying selection. Through simulations, we show that population bottlenecks and rapid growth enable deleterious rare variants to persist at low frequencies just as long as neutral variants, but low-frequency and common variants tend to be much younger than neutral variants. This has resulted in a large proportion of modern-day rare alleles that have a deleterious effect on function and that potentially contribute to disease susceptibility. CONCLUSIONS: The key question for sequencing-based association studies of complex traits is how to distinguish between deleterious and benign genetic variation. We used population genetic simulations to uncover patterns of genetic variation that distinguish these two categories, especially derived allele age, thereby providing inroads into novel methods for characterizing rare genetic variation driving complex diseases.


Subject(s)
Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Selection, Genetic , Computer Simulation , Databases, Genetic , Genetics, Population , Humans , Models, Genetic
13.
Epidemics ; 3(2): 119-24, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21624783

ABSTRACT

INTRODUCTION: Trachoma programs use mass distributions of oral azithromycin to treat the ocular strains of Chlamydia trachomatis that cause the disease. There is debate whether infection can be eradicated or only controlled. Mass antibiotic administrations clearly reduce the prevalence of chlamydia in endemic communities. However, perfect coverage is unattainable, and the World Health Organization's goal is to control infection to a level where resulting blindness is not a public health concern. Here, we use mathematical models to assess whether more ambitious goals such as local elimination or even global eradication are possible. METHODS: We fit a class of non-linear, stochastic, susceptible-infectious-susceptible (SIS) models which allow positive or negative feedback, to data from a recent community-randomized trial in Ethiopia, and make predictions using model averaging. RESULTS: The models predict that reintroduced infection may not repopulate the community, or may do so sufficiently slowly that surveillance might be effective. The preferred model exhibits positive feedback, allowing a form of stochastic hysteresis in which infection returns slowly after mass treatment, if it returns at all. Results for regions of different endemicity suggest that elimination may be more feasible than earlier models had predicted. DISCUSSION: If trachoma can be eradicated with repeated mass antibiotic distributions, it would encourage similar strategies against other bacterial diseases whose only host is humans and for which effective vaccines are not available.


Subject(s)
Chlamydia trachomatis/pathogenicity , Trachoma/epidemiology , Trachoma/transmission , Anti-Bacterial Agents/therapeutic use , Ethiopia/epidemiology , Humans , Models, Biological , Population Dynamics , Stochastic Processes , Survival Analysis , Trachoma/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...