Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
J Nat Prod ; 87(2): 315-321, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38262446

ABSTRACT

Trichothecenes (TCNs) are a large group of tricyclic sesquiterpenoid mycotoxins that have intriguing structural features and remarkable biological activities. Herein, we focused on three TCNs (anguidine, verrucarin A, and verrucarol) and their ability to target both the blood and liver stages of Plasmodium species, the parasite responsible for malaria. Anguidine and verrucarin A were found to be highly effective against the blood and liver stages of malaria, while verrucarol had no effect at the highest concentration tested. However, these compounds were also found to be cytotoxic and, thus, not selective, making them unsuitable for drug development. Nonetheless, they could be useful as chemical probes for protein synthesis inhibitors due to their direct impact on parasite synthesis processes.


Subject(s)
Antimalarials , Malaria , Plasmodium , Trichothecenes , Humans , Antimalarials/pharmacology , Antimalarials/chemistry , Trichothecenes/pharmacology , Malaria/drug therapy , Malaria/parasitology , Liver , Plasmodium falciparum
2.
J Antibiot (Tokyo) ; 76(11): 642-649, 2023 11.
Article in English | MEDLINE | ID: mdl-37731043

ABSTRACT

As part of ongoing efforts to isolate biologically active fungal metabolites, a cyclic pentapeptide, sheptide A (1), was discovered from strain MSX53339 (Herpotrichiellaceae). The structure and sequence of 1 were determined primarily by analysis of 2D NMR and HRMS/MS data, while the absolute configuration was assigned using a modified version of Marfey's method. In an in vitro assay for antimalarial potency, 1 displayed a pEC50 value of 5.75 ± 0.49 against malaria-causing Plasmodium falciparum. Compound 1 was also tested in a counter screen for general cytotoxicity against human hepatocellular carcinoma (HepG2), yielding a pCC50 value of 5.01 ± 0.45 and indicating a selectivity factor of ~6. This makes 1 the third known cyclic pentapeptide biosynthesized by fungi with antimalarial activity.


Subject(s)
Antimalarials , Ascomycota , Malaria , Humans , Antimalarials/chemistry , Malaria/drug therapy , Plasmodium falciparum , Plant Extracts/chemistry
3.
Prehosp Disaster Med ; 38(2): 168-173, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36872570

ABSTRACT

BACKGROUND: After officer-involved shootings (OIS), rapid delivery of emergency medical care is critical but may be delayed due to scene safety concerns. The purpose of this study was to describe medical care rendered by law enforcement officers (LEOs) after lethal force incidents. METHODS: Retrospective analysis of open-source video footage of OIS occurring from February 15, 2013 through December 31, 2020. Frequency and nature of care provided, time until LEO and Emergency Medical Services (EMS) care, and mortality outcomes were evaluated. The study was deemed exempt by the Mayo Clinic Institutional Review Board. RESULTS: Three hundred forty-two (342) videos were included in the final analysis; LEOs rendered care in 172 (50.3%) incidents. Average elapsed time from time-of-injury (TOI) to LEO-provided care was 155.8 (SD = 198.8) seconds. Hemorrhage control was the most common intervention performed. An average of 214.2 seconds elapsed between LEO care and EMS arrival. No mortality difference was identified between LEO versus EMS care (P = .1631). Subjects with truncal wounds were more likely to die than those with extremity wounds (P < .00001). CONCLUSIONS: It was found that LEOs rendered medical care in one-half of all OIS incidents, initiating care on average 3.5 minutes prior to EMS arrival. Although no significant mortality difference was noted for LEO versus EMS care, this finding must be interpreted cautiously, as specific interventions, such as extremity hemorrhage control, may have impacted select patients. Future studies are needed to determine optimal LEO care for these patients.


Subject(s)
First Aid , Police , Wounds, Gunshot , Wounds, Gunshot/therapy , Humans , Retrospective Studies
4.
Pathogens ; 11(12)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36558821

ABSTRACT

Malaria is a deadly disease caused by the parasite, Plasmodium, and impacts the lives of millions of people around the world. Following inoculation into mammalian hosts by infected mosquitoes, the sporozoite stage of Plasmodium undergoes obligate development in the liver before infecting erythrocytes and causing clinical malaria. The most promising vaccine candidates for malaria rely on the use of attenuated live sporozoites to induce protective immune responses. The scope of widespread testing or clinical use of such vaccines is limited by the absence of efficient, reliable, or transparent strategies for the long-term preservation of live sporozoites. Here we outline a method to cryopreserve the sporozoites of various human and murine Plasmodium species. We found that the structural integrity, viability, and in vivo or in vitro infectiousness were conserved in the recovered cryopreserved sporozoites. Cryopreservation using our approach also retained the transgenic properties of sporozoites and immunization with cryopreserved radiation attenuated sporozoites (RAS) elicited strong immune responses. Our work offers a reliable protocol for the long-term storage and recovery of human and murine Plasmodium sporozoites and lays the groundwork for the widespread use of live sporozoites for research and clinical applications.

5.
Front Microbiol ; 13: 976606, 2022.
Article in English | MEDLINE | ID: mdl-36212849

ABSTRACT

Plasmodium vivax, one species of parasite causing human malaria, forms a dormant liver stage, termed the hypnozoite, which activate weeks, months or years after the primary infection, causing relapse episodes. Relapses significantly contribute to the vivax malaria burden and are only killed with drugs of the 8-aminoquinoline class, which are contraindicated in many vulnerable populations. Development of new therapies targeting hypnozoites is hindered, in part, by the lack of robust methods to continuously culture and characterize this parasite. As a result, the determinants of relapse periodicity and the molecular processes that drive hypnozoite formation, persistence, and activation are largely unknown. While previous reports have described vastly different liver-stage growth metrics attributable to which hepatocyte donor lot is used to initiate culture, a comprehensive assessment of how different P. vivax patient isolates behave in the same lots at the same time is logistically challenging. Using our primary human hepatocyte-based P. vivax liver-stage culture platform, we aimed to simultaneously test the effects of how hepatocyte donor lot and P. vivax patient isolate influence the fate of sporozoites and growth of liver schizonts. We found that, while environmental factors such as hepatocyte donor lot can modulate hypnozoite formation rate, the P. vivax case is also an important determinant of the proportion of hypnozoites observed in culture. In addition, we found schizont growth to be mostly influenced by hepatocyte donor lot. These results suggest that, while host hepatocytes harbor characteristics making them more- or less-supportive of a quiescent versus growing intracellular parasite, sporozoite fating toward hypnozoites is isolate-specific. Future studies involving these host-parasite interactions, including characterization of individual P. vivax strains, should consider the impact of culture conditions on hypnozoite formation, in order to better understand this important part of the parasite's lifecycle.

6.
Front Cell Infect Microbiol ; 12: 986314, 2022.
Article in English | MEDLINE | ID: mdl-36093191

ABSTRACT

The resilience of Plasmodium vivax, the most widely-distributed malaria-causing parasite in humans, is attributed to its ability to produce dormant liver forms known as hypnozoites, which can activate weeks, months, or even years after an initial mosquito bite. The factors underlying hypnozoite formation and activation are poorly understood, as is the parasite's influence on the host hepatocyte. Here, we shed light on transcriptome-wide signatures of both the parasite and the infected host cell by sequencing over 1,000 P. vivax-infected hepatocytes at single-cell resolution. We distinguish between replicating schizonts and hypnozoites at the transcriptional level, identifying key differences in transcripts encoding for RNA-binding proteins associated with cell fate. In infected hepatocytes, we show that genes associated with energy metabolism and antioxidant stress response are upregulated, and those involved in the host immune response downregulated, suggesting both schizonts and hypnozoites alter the host intracellular environment. The transcriptional markers in schizonts, hypnozoites, and infected hepatocytes revealed here pinpoint potential factors underlying dormancy and can inform therapeutic targets against P. vivax liver-stage infection.


Subject(s)
Malaria, Vivax , Parasites , Animals , Hepatocytes/parasitology , Humans , Malaria, Vivax/parasitology , Plasmodium vivax/genetics , RNA , Transcriptome
7.
PLoS Negl Trop Dis ; 16(8): e0010633, 2022 08.
Article in English | MEDLINE | ID: mdl-35926062

ABSTRACT

BACKGROUND: Plasmodium vivax sporozoites reside in the salivary glands of a mosquito before infecting a human host and causing malaria. Previous transcriptome-wide studies in populations of these parasite forms were limited in their ability to elucidate cell-to-cell variation, thereby masking cellular states potentially important in understanding malaria transmission outcomes. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed transcription profiling on 9,947 P. vivax sporozoites to assess the extent to which they differ at single-cell resolution. We show that sporozoites residing in the mosquito's salivary glands exist in distinct developmental states, as defined by their transcriptomic signatures. Additionally, relative to P. falciparum, P. vivax displays overlapping and unique gene usage patterns, highlighting conserved and species-specific gene programs. Notably, distinguishing P. vivax from P. falciparum were a subset of P. vivax sporozoites expressing genes associated with translational regulation and repression. Finally, our comparison of single-cell transcriptomic data from P. vivax sporozoite and erythrocytic forms reveals gene usage patterns unique to sporozoites. CONCLUSIONS/SIGNIFICANCE: In defining the transcriptomic signatures of individual P. vivax sporozoites, our work provides new insights into the factors driving their developmental trajectory and lays the groundwork for a more comprehensive P. vivax cell atlas.


Subject(s)
Anopheles , Malaria, Falciparum , Malaria, Vivax , Malaria , Animals , Anopheles/genetics , Anopheles/parasitology , Humans , Malaria/parasitology , Malaria, Vivax/parasitology , Plasmodium vivax/genetics , Sequence Analysis, RNA , Sporozoites/genetics , Transcriptome
8.
West J Emerg Med ; 23(3): 439-442, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35679492

ABSTRACT

INTRODUCTION: Emergency departments (ED) are rapidly replacing conventional troponin assays with high-sensitivity troponin tests. We sought to evaluate emergency physician utilization of troponin tests before and after high-sensitivity troponin introduction in our ED. METHODS: We retrospectively examined 9,477 ED encounters, identifying the percentage in which physicians ordered a serum troponin both before and after our institution adopted a high-sensitivity troponin test. RESULTS: After introduction of high-sensitivity troponin testing, the percentage of ED encounters in which physicians ordered troponin studies decreased (28.3% before vs 22% after; P <.001), with the drop most pronounced in admitted patients (decrease of 10.9% [95% confidence interval [CI]: 7.3%-14.5%] in admitted patients vs decrease of 3.6% [95% CI: 1.7%-5.4%] in discharged patients; P<.001) CONCLUSION: Introduction of high-sensitivity troponin testing was associated with a decrease in troponin ordering. While the reasons for this are unclear, it is possible that physicians became more selective in their ordering behavior because of the lower specificity of high-sensitivity troponin.


Subject(s)
Physicians , Troponin , Biomarkers , Emergency Service, Hospital , Humans , Retrospective Studies
9.
Int J Parasitol ; 52(11): 733-744, 2022 10.
Article in English | MEDLINE | ID: mdl-35447149

ABSTRACT

Malaria is a major global health problem which predominantly afflicts developing countries. Although many antimalarial therapies are currently available, the protozoan parasite causing this disease, Plasmodium spp., continues to evade eradication efforts. One biological phenomenon hampering eradication efforts is the parasite's ability to arrest development, transform into a drug-insensitive form, and then resume growth post-therapy. Currently, the mechanisms by which the parasite enters arrested development, or dormancy, and later recrudesces or reactivates to continue development, are unknown and the malaria field lacks techniques to study these elusive mechanisms. Since Plasmodium spp. salvage purines for DNA synthesis, we hypothesised that alkyne-containing purine nucleosides could be used to develop a DNA synthesis marker which could be used to investigate mechanisms behind dormancy. Using copper-catalysed click chemistry methods, we observe incorporation of alkyne modified adenosine, inosine, and hypoxanthine in actively replicating asexual blood stages of Plasmodium falciparum and incorporation of modified adenosine in actively replicating liver stage schizonts of Plasmodium vivax. Notably, these modified purines were not incorporated in dormant liver stage hypnozoites, suggesting this marker could be used as a tool to differentiate replicating and non-replicating liver forms and, more broadly, as a tool for advancing our understanding of Plasmodium dormancy mechanisms.


Subject(s)
Biological Phenomena , Malaria, Vivax , Malaria , Plasmodium , Humans , Plasmodium vivax/genetics , Alkynes , Plasmodium/genetics , Malaria/parasitology , Purines , Adenosine , DNA , Malaria, Vivax/parasitology
10.
ACS Omega ; 7(14): 12401-12411, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35449901

ABSTRACT

The catechol derivative RC-12 (WR 27653) (1) is one of the few non-8-aminoquinolines with good activity against hypnozoites in the gold-standard Plasmodium cynomolgi-rhesus monkey (Macaca mulatta) model, but in a small clinical trial, it had no efficacy against Plasmodium vivax hypnozoites. In an attempt to better understand the pharmacokinetic and pharmacodynamic profile of 1 and to identify potential active metabolites, we now describe the phase I metabolism, rat pharmacokinetics, and in vitro liver-stage activity of 1 and its metabolites. Compound 1 had a distinct metabolic profile in human vs monkey liver microsomes, and the data suggested that the O-desmethyl, combined O-desmethyl/N-desethyl, and N,N-didesethyl metabolites (or a combination thereof) could potentially account for the superior liver stage antimalarial efficacy of 1 in rhesus monkeys vs that seen in humans. Indeed, the rate of metabolism was considerably lower in human liver microsomes in comparison to rhesus monkey microsomes, as was the formation of the combined O-desmethyl/N-desethyl metabolite, which was the only metabolite tested that had any activity against liver-stage P. vivax; however, it was not consistently active against liver-stage P. cynomolgi. As 1 and all but one of its identified Phase I metabolites had no in vitro activity against P. vivax or P. cynomolgi liver-stage malaria parasites, we suggest that there may be additional unidentified active metabolites of 1 or that the exposure of 1 achieved in the reported unsuccessful clinical trial of this drug candidate was insufficient to kill the P. vivax hypnozoites.

11.
Sci Rep ; 11(1): 19905, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620901

ABSTRACT

Improved control of Plasmodium vivax malaria can be achieved with the discovery of new antimalarials with radical cure efficacy, including prevention of relapse caused by hypnozoites residing in the liver of patients. We screened several compound libraries against P. vivax liver stages, including 1565 compounds against mature hypnozoites, resulting in one drug-like and several probe-like hits useful for investigating hypnozoite biology. Primaquine and tafenoquine, administered in combination with chloroquine, are currently the only FDA-approved antimalarials for radical cure, yet their activity against mature P. vivax hypnozoites has not yet been demonstrated in vitro. By developing an extended assay, we show both drugs are individually hypnozonticidal and made more potent when partnered with chloroquine, similar to clinically relevant combinations. Post-hoc analyses of screening data revealed excellent performance of ionophore controls and the high quality of single point assays, demonstrating a platform able to support screening of greater compound numbers. A comparison of P. vivax liver stage activity data with that of the P. cynomolgi blood, P. falciparum blood, and P. berghei liver stages reveals overlap in schizonticidal but not hypnozonticidal activity, indicating that the delivery of new radical curative agents killing P. vivax hypnozoites requires an independent and focused drug development test cascade.


Subject(s)
Aminoquinolines/pharmacology , Antimalarials/pharmacology , Liver/parasitology , Malaria, Vivax/parasitology , Parasitic Sensitivity Tests , Plasmodium vivax/drug effects , Aminoquinolines/chemistry , Aminoquinolines/therapeutic use , Antimalarials/chemistry , Antimalarials/therapeutic use , Chloroquine/pharmacology , Dose-Response Relationship, Drug , Drug Discovery/methods , Drug Synergism , Humans , Life Cycle Stages , Malaria, Vivax/drug therapy , Molecular Structure , Parasitic Sensitivity Tests/methods , Plasmodium vivax/growth & development , ROC Curve , Time Factors
12.
J Antimicrob Chemother ; 76(10): 2565-2568, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34245274

ABSTRACT

BACKGROUND: Expanding resistance to multiple antimalarials, including chloroquine, in South-East Asia (SEA) urges the development of new therapies. AQ-13, a chloroquine derivative, is a new drug candidate for treating malaria caused by Plasmodium falciparum. OBJECTIVES: Possible cross-resistance between the 4-aminoquinolines amodiaquine, piperaquine and AQ-13 has not been assessed. In vitro parasite growth assays were used to characterize the susceptibility of multidrug-resistant and susceptible P. falciparum patient isolates to AQ-13. METHODS: A [3H]hypoxanthine uptake assay and a 384-well high content imaging assay were used to assess efficacy of AQ-13 and desethyl-amodiaquine against 38 P. falciparum isolates. RESULTS: We observed a strong cross-resistance between the chloroquine derivative amodiaquine and AQ-13 in Cambodian P. falciparum isolates (Pearson correlation coefficient of 0.8621, P < 0.0001). CONCLUSIONS: In light of the poor efficacy of amodiaquine that we described recently in Cambodia, and its cross resistance with AQ-13, there is a significant risk that similar clinical efficacy of AQ-13-based combinations should be anticipated in areas of amodiaquine resistance.


Subject(s)
Antimalarials , Malaria, Falciparum , Amodiaquine/pharmacology , Amodiaquine/therapeutic use , Antimalarials/pharmacology , Antimalarials/therapeutic use , Asian People , Chloroquine/pharmacology , Chloroquine/therapeutic use , Drug Combinations , Drug Resistance , Humans , Malaria, Falciparum/drug therapy , Plasmodium falciparum
13.
Front Cell Infect Microbiol ; 11: 687019, 2021.
Article in English | MEDLINE | ID: mdl-34195101

ABSTRACT

Plasmodium is a genus of apicomplexan parasites which replicate in the liver before causing malaria. Plasmodium vivax can also persist in the liver as dormant hypnozoites and cause clinical relapse upon activation, but the molecular mechanisms leading to activation have yet to be discovered. In this study, we use high-resolution microscopy to characterize temporal changes of the P. vivax liver stage tubovesicular network (TVN), a parasitophorous vacuole membrane (PVM)-derived network within the host cytosol. We observe extended membrane clusters, tubules, and TVN-derived vesicles present throughout P. vivax liver stage development. Additionally, we demonstrate an unexpected presence of the TVN in hypnozoites and observe some association of this network to host nuclei. We also reveal that the host water and solute channel aquaporin-3 (AQP3) associates with TVN-derived vesicles and extended membrane clusters. AQP3 has been previously shown to localize to the PVM of P. vivax hypnozoites and liver schizonts but has not yet been shown in association to the TVN. Our results highlight host-parasite interactions occur in both dormant and replicating liver stage P. vivax forms and implicate AQP3 function during this time. Together, these findings enhance our understanding of P. vivax liver stage biology through characterization of the TVN with an emphasis on the presence of this network in dormant hypnozoites.


Subject(s)
Malaria, Vivax , Plasmodium , Animals , Liver , Plasmodium vivax , Schizonts
14.
J Med Chem ; 64(10): 6581-6595, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33979164

ABSTRACT

Preclinical and clinical development of numerous small molecules is prevented by their poor aqueous solubility, limited absorption, and oral bioavailability. Herein, we disclose a general prodrug approach that converts promising lead compounds into aminoalkoxycarbonyloxymethyl (amino AOCOM) ether-substituted analogues that display significantly improved aqueous solubility and enhanced oral bioavailability, restoring key requirements typical for drug candidate profiles. The prodrug is completely independent of biotransformations and animal-independent because it becomes an active compound via a pH-triggered intramolecular cyclization-elimination reaction. As a proof-of-concept, the utility of this novel amino AOCOM ether prodrug approach was demonstrated on an antimalarial compound series representing a variety of antimalarial 4(1H)-quinolones, which entered and failed preclinical development over the last decade. With the amino AOCOM ether prodrug moiety, the 3-aryl-4(1H)-quinolone preclinical candidate was shown to provide single-dose cures in a rodent malaria model at an oral dose of 3 mg/kg, without the use of an advanced formulation technique.


Subject(s)
Antimalarials/chemistry , Ethers/chemistry , Prodrugs/chemistry , Quinolones/chemistry , Administration, Oral , Animals , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Cyclization , Disease Models, Animal , Female , Half-Life , Hydrogen-Ion Concentration , Malaria/drug therapy , Malaria/parasitology , Mice , Mice, Inbred BALB C , Plasmodium falciparum/drug effects , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Prodrugs/therapeutic use , Quinolones/pharmacokinetics , Quinolones/pharmacology , Quinolones/therapeutic use , Solubility , Structure-Activity Relationship
15.
ACS Infect Dis ; 7(7): 2013-2024, 2021 07 09.
Article in English | MEDLINE | ID: mdl-33792305

ABSTRACT

During the past decade, artemisinin as an antimalarial has been in the spotlight, in part due to the Nobel Prize in Physiology or Medicine awarded to Tu Youyou. While many studies have been completed detailing the significant increase in activity resulting from the dimerization of natural product artemisinin, activity increases unaccounted for by the peroxide bridge have yet to be researched. Here we outline the synthesis and testing for antimalarial activity of artemisinin dimers in which the peroxide bridge in one-half of the dimer is reduced, resulting in a dimer with one active and one deactivated artemisinin moiety.


Subject(s)
Antimalarials , Artemisinins , Antimalarials/pharmacology , Artemisinins/pharmacology , Dimerization
16.
Bio Protoc ; 11(23): e4253, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-35005096

ABSTRACT

Control of malaria caused by Plasmodium vivax can be improved by the discovery and development of novel drugs against the parasite's liver stage, which includes relapse-causing hypnozoites. Several recent reports describe breakthroughs in the culture of the P. vivax liver stage in 384-well microtiter plates, with the goal of enabling a hypnozoite-focused drug screen. Herein we describe assay details, protocol developments, and different assay formats to interrogate the chemical sensitivity of the P. vivax liver stage in one such medium-throughput platform. The general assay protocol includes seeding of primary human hepatocytes which are infected with P. vivax sporozoites generated from the feeding of Anopheles dirus mosquitoes on patient isolate bloodmeals. This protocol is unique in that, after source drug plates are supplied, all culture-work steps have been optimized to preclude the need for automated liquid handling, thereby allowing the assay to be performed within resource-limited laboratories in malaria-endemic countries. Throughput is enhanced as complex culture methods, such as extracellular matrix overlays, multiple cell types in co-culture, or hepatic spheroids, are excluded as the workflow consists entirely of routine culture methods for adherent cells. Furthermore, installation of a high-content imager at the study site enables assay data to be read and transmitted with minimal logistical delays. Herein we detail distinct assay improvements which increase data quality, provide a means to limit the confounding effect of hepatic metabolism on assay data, and detect activity of compounds with a slow-clearance phenotype. Graphical abstract: Overview of P. vivax liver stage screening assay performed at the Institute Pasteur of Cambodia.

17.
Cell Chem Biol ; 27(6): 719-727.e5, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32330444

ABSTRACT

Plasmodium vivax infects hepatocytes to form schizonts that cause blood infection, or dormant hypnozoites that can persist for months in the liver before leading to relapsing blood infections. The molecular processes that drive P. vivax schizont and hypnozoite survival remain largely unknown, but they likely involve a rich network of host-pathogen interactions, including those occurring at the host-parasite interface, the parasitophorous vacuole membrane (PVM). Using a recently developed P. vivax liver-stage model system we demonstrate that host aquaporin-3 (AQP3) localizes to the PVM of schizonts and hypnozoites within 5 days after invasion. This recruitment is also observed in P. vivax-infected reticulocytes. Chemical treatment with the AQP3 inhibitor auphen reduces P. vivax liver hypnozoite and schizont burden, and inhibits P. vivax asexual blood-stage growth. These findings reveal a role for AQP3 in P. vivax liver and blood stages and suggest that the protein may be targeted for therapeutic treatment.


Subject(s)
Aquaporin 3/metabolism , Liver/metabolism , Malaria, Vivax/metabolism , Plasmodium vivax/metabolism , Cells, Cultured , Humans , Liver/drug effects , Liver/parasitology , Malaria, Vivax/drug therapy , Malaria, Vivax/parasitology , Plasmodium vivax/isolation & purification
18.
Lab Chip ; 20(6): 1124-1139, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32055808

ABSTRACT

Advanced cell culture methods for modeling organ-level structure have been demonstrated to replicate in vivo conditions more accurately than traditional in vitro cell culture. Given that the liver is particularly important to human health, several advanced culture methods have been developed to experiment with liver disease states, including infection with Plasmodium parasites, the causative agent of malaria. These models have demonstrated that intrahepatic parasites require functionally stable hepatocytes to thrive and robust characterization of the parasite populations' response to investigational therapies is dependent on high-content and high-resolution imaging (HC/RI). We previously reported abiotic confinement extends the functional longevity of primary hepatocytes in a microfluidic platform and set out to instill confinement in a microtiter plate platform while maintaining optical accessibility for HC/RI; with an end-goal of producing an improved P. vivax liver stage culture model. We developed a novel fabrication process in which a PDMS soft mold embosses hepatocyte-confining microfeatures into polystyrene, resulting in microfeature-based hepatocyte confinement (µHEP) slides and plates. Our process was optimized to form both microfeatures and culture wells in a single embossing step, resulting in a 100 µm-thick bottom ideal for HC/RI, and was found inexpensively amendable to microfeature design changes. Microfeatures improved intrahepatic parasite infection rates and µHEP systems were used to reconfirm the activity of reference antimalarials in phenotypic dose-response assays. RNAseq of hepatocytes in µHEP systems demonstrated microfeatures sustain hepatic differentiation and function, suggesting broader utility for preclinical hepatic assays; while our tailorable embossing process could be repurposed for developing additional organ models.


Subject(s)
Antimalarials , Malaria , Antimalarials/pharmacology , Cell Culture Techniques , Hepatocytes , Humans , Liver
19.
Nat Commun ; 10(1): 3635, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31406175

ABSTRACT

The ability to culture pathogenic organisms substantially enhances the quest for fundamental knowledge and the development of vaccines and drugs. Thus, the elaboration of a protocol for the in vitro cultivation of the erythrocytic stages of Plasmodium falciparum revolutionized research on this important parasite. However, for P. vivax, the most widely distributed and difficult to treat malaria parasite, a strict preference for reticulocytes thwarts efforts to maintain it in vitro. Cultivation of P. cynomolgi, a macaque-infecting species phylogenetically close to P. vivax, was briefly reported in the early 1980s, but not pursued further. Here, we define the conditions under which P. cynomolgi can be adapted to long term in vitro culture to yield parasites that share many of the morphological and phenotypic features of P. vivax. We further validate the potential of this culture system for high-throughput screening to prime and accelerate anti-P. vivax drug discovery efforts.


Subject(s)
Erythrocytes/parasitology , Macaca/parasitology , Malaria/veterinary , Monkey Diseases/parasitology , Plasmodium cynomolgi/growth & development , Animals , Anopheles/parasitology , Malaria/parasitology , Malaria/transmission
20.
Proc Natl Acad Sci U S A ; 116(14): 7015-7020, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30894487

ABSTRACT

Malaria and cryptosporidiosis, caused by apicomplexan parasites, remain major drivers of global child mortality. New drugs for the treatment of malaria and cryptosporidiosis, in particular, are of high priority; however, there are few chemically validated targets. The natural product cladosporin is active against blood- and liver-stage Plasmodium falciparum and Cryptosporidium parvum in cell-culture studies. Target deconvolution in P. falciparum has shown that cladosporin inhibits lysyl-tRNA synthetase (PfKRS1). Here, we report the identification of a series of selective inhibitors of apicomplexan KRSs. Following a biochemical screen, a small-molecule hit was identified and then optimized by using a structure-based approach, supported by structures of both PfKRS1 and C. parvum KRS (CpKRS). In vivo proof of concept was established in an SCID mouse model of malaria, after oral administration (ED90 = 1.5 mg/kg, once a day for 4 d). Furthermore, we successfully identified an opportunity for pathogen hopping based on the structural homology between PfKRS1 and CpKRS. This series of compounds inhibit CpKRS and C. parvum and Cryptosporidium hominis in culture, and our lead compound shows oral efficacy in two cryptosporidiosis mouse models. X-ray crystallography and molecular dynamics simulations have provided a model to rationalize the selectivity of our compounds for PfKRS1 and CpKRS vs. (human) HsKRS. Our work validates apicomplexan KRSs as promising targets for the development of drugs for malaria and cryptosporidiosis.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum/enzymology , Enzyme Inhibitors/pharmacology , Lysine-tRNA Ligase/antagonists & inhibitors , Malaria, Falciparum , Plasmodium falciparum/enzymology , Protozoan Proteins/antagonists & inhibitors , Animals , Cryptosporidiosis/drug therapy , Cryptosporidiosis/enzymology , Disease Models, Animal , Enzyme Inhibitors/chemistry , Humans , Lysine-tRNA Ligase/metabolism , Malaria, Falciparum/drug therapy , Malaria, Falciparum/enzymology , Mice, SCID , Protozoan Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...