Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 27(2): 956-966, 2022 02.
Article in English | MEDLINE | ID: mdl-34728797

ABSTRACT

Doublecortin (DCX) has long been implicated in, and employed as a marker for, neurogenesis, yet little is known about its function in non-neurogenic brain regions, including the amygdala. This study sought first to explore, in rodents, whether fear learning and extinction modulate amygdala DCX expression and, second, to assess the utility of peripheral DCX correlates as predictive biomarkers of trauma response in rodents and humans. Pavlovian conditioning was found to alter DCX protein levels in mice 24 h later, resulting in higher DCX expression associated with enhanced learning in paradigms examining both the acquisition and extinction of fear (p < 0.001). This, in turn, is associated with differences in freezing on subsequent fear expression tests, and the same relationship between DCX and fear extinction was replicated in rats (p < 0.001), with higher amygdala DCX levels associated with more rapid extinction of fear. RNAseq of amygdala and blood from mice identified 388 amygdala genes that correlated with DCX (q < 0.001) and which gene ontology analyses revealed were significantly over-represented for neurodevelopmental processes. In blood, DCX-correlated genes included the Wnt signaling molecule Cdk14 which was found to predict freezing during both fear acquisition (p < 0.05) and brief extinction protocols (p < 0.001). High Cdk14 measured in blood immediately after testing was also associated with less freezing during fear expression testing (p < 0.01). Finally, in humans, Cdk14 expression in blood taken shortly after trauma was found to predict resilience in males for up to a year post-trauma (p < 0.0001). These data implicate amygdala DCX in fear learning and suggest that Cdk14 may serve as a predictive biomarker of trauma response.


Subject(s)
Extinction, Psychological , Fear , Amygdala/metabolism , Animals , Conditioning, Classical/physiology , Extinction, Psychological/physiology , Fear/physiology , Individuality , Male , Mice , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...