Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Elife ; 122024 May 10.
Article in English | MEDLINE | ID: mdl-38727712

ABSTRACT

Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.


Subject(s)
Hippocampus , Synapses , Synaptic Vesicles , Animals , Hippocampus/physiology , Synaptic Vesicles/metabolism , Synaptic Vesicles/physiology , Synapses/physiology , Synaptic Transmission/physiology , Rats , Exocytosis , Presynaptic Terminals/physiology
2.
Cell Rep ; 43(5): 114157, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38678557

ABSTRACT

The sensory cortex receives synaptic inputs from both first-order and higher-order thalamic nuclei. First-order inputs relay simple stimulus properties from the periphery, whereas higher-order inputs relay more complex response properties, provide contextual feedback, and modulate plasticity. Here, we reveal that a cortical neuron's higher-order input is determined by the type of progenitor from which it is derived during embryonic development. Within layer 4 (L4) of the mouse primary somatosensory cortex, neurons derived from intermediate progenitors receive stronger higher-order thalamic input and exhibit greater higher-order sensory responses. These effects result from differences in dendritic morphology and levels of the transcription factor Lhx2, which are specified by the L4 neuron's progenitor type. When this mechanism is disrupted, cortical circuits exhibit altered higher-order responses and sensory-evoked plasticity. Therefore, by following distinct trajectories, progenitor types generate diversity in thalamocortical circuitry and may provide a general mechanism for differentially routing information through the cortex.


Subject(s)
Somatosensory Cortex , Thalamus , Transcription Factors , Animals , Mice , Thalamus/cytology , Thalamus/embryology , Thalamus/physiology , Transcription Factors/metabolism , Somatosensory Cortex/cytology , Somatosensory Cortex/physiology , LIM-Homeodomain Proteins/metabolism , LIM-Homeodomain Proteins/genetics , Neurons/cytology , Neurons/physiology , Neurons/metabolism , Neuronal Plasticity/physiology , Mice, Inbred C57BL
3.
Mol Neurobiol ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483654

ABSTRACT

T14, a 14mer peptide, is significantly increased in the pre-symptomatic Alzheimer's disease brain, and growing evidence implies its pivotal role in neurodegeneration. Here, we explore the subsequent intracellular events following binding of T14 to its target α7 nicotinic acetylcholine receptor (nAChR). Specifically, we test how various experimental manipulations of PC12 cells impact T14-induced functional outcomes. Three preparations were compared: (i) undifferentiated vs. NGF-differentiated cells; (ii) cells transfected with an overexpression of the target α7 nAChR vs. wild type cells; (iii) cells transfected with a mutant α7 nAChR containing a mutation in the G protein-binding cluster, vs. cells transfected with an overexpression of the target α7 nAChR, in three functional assays - calcium influx, cell viability, and acetylcholinesterase release. NGF-differentiated PC12 cells were less sensitive than undifferentiated cells to the concentration-dependent T14 treatment, in all the functional assays performed. The overexpression of α7 nAChR in PC12 cells promoted enhanced calcium influx when compared with the wild type PC12 cells. The α7345-348 A mutation effectively abolished the T14-triggered responses across all the readouts observed. The close relationship between T14 and the α7 nAChR was further evidenced in the more physiological preparation of ex vivo rat brain, where T30 increased α7 nAChR mRNA, and finally in human brain post-mortem, where levels of T14 and α7 nAChR exhibited a strong correlation, reflecting the progression of neurodegeneration. Taken together these data would make it hard to account for T14 binding to any other receptor, and thus interception at this binding site would make a very attractive and remarkably specific therapeutic strategy.

4.
Biomed Pharmacother ; 167: 115498, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37713989

ABSTRACT

T14, a 14mer peptide derived from the C-terminus of acetylcholinesterase (AChE) is a signalling molecule that could drive neurodegeneration via the alpha 7 nicotinic acetylcholine receptor. Its levels increase as Alzheimer's pathology progresses; however, a cyclic variant of the compound, NBP14, can block the effects of the endogenous linear counterpart in-vitro, ex vivo, and in vivo. Here, we explore the antagonistic potential of two 6mer peptides, NBP6A and NBP6B. These are smaller linear versions of NBP14, designed to be more effective by modifying the amino acid residues to enhance receptor blockade alongside other relevant solubility parameters. The peptides were tested in-vitro in PC12 cells on three parameters, calcium influx, cell viability, and AChE release, and ex vivo using voltage sensitive dye imaging (VSDI) in rat brain slices. Neither NBP6A nor NBP6B applied alone had any effect. In PC12 cells, NBP6B was identified as the more potent molecule since it demonstrated more effective blockade of T14 action on calcium influx, cell viability, and AChE release. NBP6B was then further evaluated using VSDI, where it proved twice as potent as NBP14 in blocking the action of T14. The improved effect of NBP6B in blocking the actions of T14, combined with its smaller size suggests that this variant could have even greater therapeutic potential than its original cyclic compound, for treating neurodegenerative disorders.

5.
Int J Mol Sci ; 24(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37373106

ABSTRACT

T14 modulates calcium influx via the α-7 nicotinic acetylcholine receptor to regulate cell growth. Inappropriate triggering of this process has been implicated in Alzheimer's disease (AD) and cancer, whereas T14 blockade has proven therapeutic potential in in vitro, ex vivo and in vivo models of these pathologies. Mammalian target of rapamycin complex 1 (mTORC1) is critical for growth, however its hyperactivation is implicated in AD and cancer. T14 is a product of the longer 30mer-T30. Recent work shows that T30 drives neurite growth in the human SH-SY5Y cell line via the mTOR pathway. Here, we demonstrate that T30 induces an increase in mTORC1 in PC12 cells, and ex vivo rat brain slices containing substantia nigra, but not mTORC2. The increase in mTORC1 by T30 in PC12 cells is attenuated by its blocker, NBP14. Moreover, in post-mortem human midbrain, T14 levels correlate significantly with mTORC1. Silencing mTORC1 reverses the effects of T30 on PC12 cells measured via AChE release in undifferentiated PC12 cells, whilst silencing mTORC2 does not. This suggests that T14 acts selectively via mTORC1. T14 blockade offers a preferable alternative to currently available blockers of mTOR as it would enable selective blockade of mTORC1, thereby reducing side effects associated with generalised mTOR blockade.


Subject(s)
Alzheimer Disease , Neuroblastoma , Rats , Animals , Humans , Sirolimus/pharmacology , Mechanistic Target of Rapamycin Complex 1/metabolism , TOR Serine-Threonine Kinases/metabolism , Peptides , Mechanistic Target of Rapamycin Complex 2/metabolism , Alzheimer Disease/pathology , Mammals/metabolism
6.
Nat Neurosci ; 26(1): 64-78, 2023 01.
Article in English | MEDLINE | ID: mdl-36510112

ABSTRACT

Extended wakefulness is associated with reduced performance and the build-up of sleep pressure. In the cortex, this manifests as changes in network activity. These changes show local variation depending on the waking experience, and their underlying mechanisms represent targets for overcoming the effects of tiredness. Here, we reveal a central role for intracellular chloride regulation, which sets the strength of postsynaptic inhibition via GABAA receptors in cortical pyramidal neurons. Wakefulness results in depolarizing shifts in the equilibrium potential for GABAA receptors, reflecting local activity-dependent processes during waking and involving changes in chloride cotransporter activity. These changes underlie electrophysiological and behavioral markers of local sleep pressure within the cortex, including the levels of slow-wave activity during non-rapid eye movement sleep and low-frequency oscillatory activity and reduced performance levels in the sleep-deprived awake state. These findings identify chloride regulation as a crucial link between sleep-wake history, cortical activity and behavior.


Subject(s)
Chlorides , Sleep , Chlorides/pharmacology , Sleep/physiology , Wakefulness/physiology , Electrophysiological Phenomena , gamma-Aminobutyric Acid/pharmacology , Electroencephalography
7.
Methods Mol Biol ; 2188: 179-189, 2021.
Article in English | MEDLINE | ID: mdl-33119852

ABSTRACT

To understand how the brain functions we need to understand the properties of its constituent cells. Whole-cell patch-clamp recordings of neurons have enabled studies of their intrinsic electrical properties as well as their synaptic connectivity within neural circuits. Recent technological advances have now made it possible to combine this with a sampling of their transcriptional profile. Here we provide a detailed description how to combine whole-cell patch-clamp recordings of neurons in brain slices followed by extraction of their cytoplasm suitable for single-cell RNA sequencing and analysis.


Subject(s)
Brain/physiology , Neurons/physiology , Patch-Clamp Techniques/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , Brain/cytology , Brain/metabolism , Mice , Neurons/cytology , Neurons/metabolism , Patch-Clamp Techniques/instrumentation , Rats , Sequence Analysis, RNA/instrumentation , Single-Cell Analysis/instrumentation
8.
Nat Commun ; 10(1): 5224, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31745093

ABSTRACT

The mammalian neocortex is characterized by a variety of neuronal cell types and precise arrangements of synaptic connections, but the processes that generate this diversity are poorly understood. Here we examine how a pool of embryonic progenitor cells consisting of apical intermediate progenitors (aIPs) contribute to diversity within the upper layers of mouse cortex. In utero labeling combined with single-cell RNA-sequencing reveals that aIPs can generate transcriptionally defined glutamatergic cell types, when compared to neighboring neurons born from other embryonic progenitor pools. Whilst sharing layer-associated morphological and functional properties, simultaneous patch clamp recordings and optogenetic studies reveal that aIP-derived neurons exhibit systematic biases in both their intralaminar monosynaptic connectivity and the post-synaptic partners that they target within deeper layers of cortex. Multiple cortical progenitor pools therefore represent an important factor in establishing diversity amongst local and long-range fine-scale glutamatergic connectivity, which generates subnetworks for routing excitatory synaptic information.


Subject(s)
Action Potentials/physiology , Excitatory Postsynaptic Potentials/physiology , Neocortex/physiology , Nerve Net/physiology , Neurons/physiology , Animals , Mice, Inbred C57BL , Neocortex/cytology , Neocortex/embryology , Nerve Net/cytology , Optogenetics , Patch-Clamp Techniques , Synapses/physiology
9.
PLoS Comput Biol ; 12(4): e1004855, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27035349

ABSTRACT

The readily releasable pool (RRP) of vesicles is a core concept in studies of presynaptic function. However, operating principles lack consensus definition and the utility for quantitative analysis has been questioned. Here we confirm that RRPs at calyces of Held from 14 to 21 day old mice have a fixed capacity for storing vesicles that is not modulated by Ca2+. Discrepancies with previous studies are explained by a dynamic flow-through pool, established during heavy use, containing vesicles that are released with low probability despite being immediately releasable. Quantitative analysis ruled out a posteriori explanations for the vesicles with low release probability, such as Ca2+-channel inactivation, and established unexpected boundary conditions for remaining alternatives. Vesicles in the flow-through pool could be incompletely primed, in which case the full sequence of priming steps downstream of recruitment to the RRP would have an average unitary rate of at least 9/s during heavy use. Alternatively, vesicles with low and high release probability could be recruited to distinct types of release sites; in this case the timing of recruitment would be similar at the two types, and the downstream transition from recruited to fully primed would be much faster. In either case, further analysis showed that activity accelerates the upstream step where vesicles are initially recruited to the RRP. Overall, our results show that the RRP can be well defined in the mathematical sense, and support the concept that the defining mechanism is a stable group of autonomous release sites.


Subject(s)
Auditory Pathways/physiology , Models, Neurological , Trapezoid Body/physiology , Animals , Calcium/metabolism , Cochlear Nucleus/physiology , Computational Biology , Computer Simulation , Electric Stimulation , Excitatory Postsynaptic Potentials , Female , Male , Mice , Mice, Inbred C57BL , Neuronal Plasticity , Presynaptic Terminals/physiology , Synaptic Vesicles/physiology
10.
Neurobiol Dis ; 93: 47-56, 2016 09.
Article in English | MEDLINE | ID: mdl-27072890

ABSTRACT

Age-inappropriate expression of juvenile NMDA receptors (NMDARs) containing GluN3A subunits has been linked to synapse loss and death of spiny projection neurons of the striatum (SPNs) in Huntington's disease (HD). Here we show that suppressing GluN3A expression prevents a multivariate synaptic transmission phenotype that precedes morphological signs at early prodromal stages. We start by confirming that afferent fiber stimulation elicits larger synaptic responses mediated by both AMPA receptors and NMDARs in SPNs in the YAC128 mouse model of HD. We then show that the enhancement mediated by both is fully prevented by suppressing GluN3A expression. Strong fiber-stimulation unexpectedly elicited robust NMDAR-mediated electrogenic events (termed "upstates" or "NMDA spikes"), and the effective threshold for induction was more than 2-fold lower in YAC128 SPNs because of the enhanced synaptic transmission. The threshold could be restored to control levels by suppressing GluN3A expression or by applying the weak NMDAR blocker memantine. However, the threshold was not affected by preventing glutamate spillover from synaptic clefts. Instead, long-lasting NMDAR responses interpreted previously as activation of extrasynaptic receptors by spilled-over glutamate were caused by NMDA spikes occurring in voltage clamp mode as escape potentials. Together, the results implicate GluN3A reactivation in a broad spectrum of early-stage synaptic transmission deficits in YAC128 mice; question the current concept that NMDAR mislocalization is the pathological trigger in HD; and introduce NMDA spikes as a new candidate mechanism for coupling NMDARs to neurodegeneration.


Subject(s)
Huntington Disease/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission , Animals , Corpus Striatum/metabolism , Disease Models, Animal , Glutamic Acid/metabolism , Huntington Disease/genetics , Memantine/pharmacology , Mice , Synapses/drug effects , Synapses/metabolism , Synaptic Transmission/drug effects
11.
Epilepsia ; 56(4): 535-45, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25684406

ABSTRACT

OBJECTIVE: To determine if levetiracetam (LEV) enhances the impact in excitatory presynaptic terminals of a rate-limiting mechanism in vesicle trafficking termed supply rate depression that emerges to limit synaptic transmission during heavy, epileptiform use. METHODS: The effect of LEV was measured with electrophysiologic assays of monosynaptic connections in ex vivo hippocampal slices from wild-type and synapsin knockout mice, and in primary cell culture neurons from wild-type and synaptic vesicle glycoprotein 2a (SV2a) knockout mice. RESULTS: LEV enhanced the impact of supply rate depression at Schaffer collateral synapses by shortening the time course for induction. The LEV effect was selective for supply rate depression because other presynaptic vesicle trafficking mechanisms were not affected. The half maximal effective concentration (EC50 ) was ~50 µm. The maximal effect was ~15% and occurred at 100 µm, which is a clinically relevant concentration. An experimental protocol is established for distinguishing atypical antiepileptic drugs (AEDs) that affect supply rate depression, such as LEV, from typical AEDs, such as carbamazepine, that affect upstream mechanisms. The LEV effect was abolished at synapses from knockout mice lacking SV2a and from synapses lacking synapsin 1 and 2. SIGNIFICANCE: The findings are consistent with the new hypothesis that LEV acts to treat epilepsy by accelerating the induction of supply rate depression at excitatory synapses during incipient epileptic activity. The absence of the effect in the knockouts confirms that presynaptic function is the target. More specifically, the absence in SV2a knockouts is consistent with previous binding studies suggesting that SV2a is the target for LEV. The absence in synapsin knockouts indicates that the phenotypic target intersects with the biochemical pathway that is altered in synapsin knockouts. The results from synapsin knockouts additionally suggest that development of functional analogs with increased potency might be possible because induction of supply rate depression is faster in synapsin knockouts compared to wild-type synapses treated with LEV.


Subject(s)
Long-Term Synaptic Depression/drug effects , Piracetam/analogs & derivatives , Synaptic Vesicles/drug effects , Synaptic Vesicles/metabolism , Animals , Animals, Newborn , Hippocampus/drug effects , Hippocampus/metabolism , Levetiracetam , Long-Term Synaptic Depression/physiology , Mice , Mice, Knockout , Organ Culture Techniques , Piracetam/metabolism , Piracetam/pharmacology , Protein Transport/drug effects , Protein Transport/physiology
12.
J Neurosci ; 31(32): 11563-77, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21832187

ABSTRACT

At least two rate-limiting mechanisms in vesicle trafficking operate at mouse Schaffer collateral synapses, but their molecular/physical identities are unknown. The first mechanism determines the baseline rate at which reserve vesicles are supplied to a readily releasable pool. The second causes the supply rate to depress threefold when synaptic transmission is driven hard for extended periods. Previous models invoked depletion of a reserve vesicle pool to explain the reductions in the supply rate, but the mass-action assumption at their core is not compatible with kinetic measurements of neurotransmission under maximal-use conditions. Here we develop a new theoretical model of rate-limiting steps in vesicle trafficking that is compatible with previous and new measurements. A physical interpretation is proposed where local reserve pools consisting of four vesicles are tethered to individual release sites and are replenished stochastically in an all-or-none fashion. We then show that the supply rate depresses more rapidly in synapsin knock-outs and that the phenotype can be fully explained by changing the value of the single parameter in the model that would specify the size of the local reserve pools. Vesicle-trafficking rates between pools were not affected. Finally, optical imaging experiments argue against alternative interpretations of the theoretical model where vesicle trafficking is inhibited without reserve pool depletion. This new conceptual framework will be useful for distinguishing which of the multiple molecular and cell biological mechanisms involved in vesicle trafficking are rate limiting at different levels of synaptic throughput and are thus candidates for physiological and pharmacological modulation.


Subject(s)
Models, Neurological , Synapsins/deficiency , Synapsins/metabolism , Synaptic Vesicles/physiology , Action Potentials/genetics , Animals , Cells, Cultured , Female , Hippocampus/metabolism , Male , Mice , Mice, Knockout , Phenotype , Protein Transport/genetics , Synaptic Vesicles/genetics
13.
J Neurosci ; 30(7): 2755-66, 2010 Feb 17.
Article in English | MEDLINE | ID: mdl-20164359

ABSTRACT

Successful axon targeting during development is critically dependent on directionality of axon extension and requires coordination between the extrinsic cues that provide spatial information to the axon and the intrinsic responses that regulate structural specification of the axon during neuronal polarization. How these responses are coordinated is unclear but are known to involve aligning the centrosome with the base of the emerging axon. We have used a novel in vitro micropatterning assay that spatially segregates the extrinsic cues used by polarizing cerebellar granule cells to orient axon extension and used it to investigate the signaling mechanisms responsible for coordinating centrosome positioning with intrinsic responses. The results show that, when laminin and/or vitronectin are used as spatially restricted cues in association with substrate-associated sonic hedgehog, they are sufficient to induce cell cycle arrest, that laminin and vitronectin then induce integrin-mediated signaling that upregulates phosphoinositide-3 kinase and PKC function to produce phosphatidylinositol 3,4,5-trisphosphate (PIP3) that is associated with the centrosome, that this PIP3 can interact with PKC-phosphorylated growth-associated protein GAP-43, and that PKC-phosphorylated GAP-43 in turn is required for positioning Par6, Cdc42, and IQGAP1, all intrinsic response components, in proximity to the centrosome, such that, in the absence of GAP-43, they are mislocalized and microtubules are not oriented appropriately. We conclude from these results that GAP-43 plays an important role in coordinating extrinsic signaling and intrinsic responses in polarizing cerebellar granule neurons.


Subject(s)
Centrosome/physiology , Cerebellum/cytology , Extracellular Matrix/physiology , Gene Expression Regulation, Developmental/physiology , Neurons/cytology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Analysis of Variance , Animals , Animals, Newborn , Cells, Cultured , Cerebellum/growth & development , Embryo, Mammalian , GAP-43 Protein/genetics , GAP-43 Protein/metabolism , Green Fluorescent Proteins/genetics , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , In Vitro Techniques , Laminin/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Neurons/physiology , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding/genetics , Protein Kinase C/metabolism , RNA, Small Interfering/metabolism , Signal Transduction/physiology , Vitronectin/metabolism , cdc42 GTP-Binding Protein/metabolism , ras GTPase-Activating Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...