Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Otol ; 16(3): 128-137, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34220981

ABSTRACT

OBJECTIVES: The video head impulse test (vHIT) is used as a measure of compensation yet it's stability in patients with vestibular pathology is unknown. METHODS: 144 patients (n = 72 female, mean 54.46 ± 15.8 years) were grouped into one of three primary diagnoses (Peripheral, Central, or Mixed). Subjects were further categorized based on sex (male versus female), ear (left versus right; ipsilesional versus contralesional), age (six groups ranging from 19 to 84 years), and duration between visits (five groups, mean 191.46 ± SE 29.42 days, median 55.5 days). The gain of the VOR during passive head rotation was measured for each semicircular canal (horizontal, anterior, posterior). RESULTS: There was no difference in the VOR gain within any semicircular canal between the two visits (horizontal: p = 0.179; anterior: p = 0.628; posterior: p = 0.613). However, the VOR gain from the horizontal canals was higher than the vertical canals for each visit (p < 0.001). Patients diagnosed with peripheral vestibular pathology had significantly lower (p ≤ 0.001) horizontal semicircular canal gains at each visit. There was no difference in VOR gain between sex (p = 0.215) or age groupings (p = 0.331). Test-retest reliability of vHIT in patient subjects is good (ICC = 0.801) and the VOR gain values across two separate visits were significant and positively correlated (r = 0.67) regardless of sex, ear, age, or duration between visits. CONCLUSION: The vHIT is a stable measure of VOR gain over two different times across a variety of vestibular patients with no influence of age or sex.

2.
J Assoc Res Otolaryngol ; 21(3): 277-285, 2020 06.
Article in English | MEDLINE | ID: mdl-32232608

ABSTRACT

We sought to determine whether repeated vestibulo-ocular reflex (VOR) adaptation training to increase the VOR gain (eye/head velocity) had a lasting effect in normal subjects and whether there was a retinal image slip tolerance threshold for VOR adaptation. We used the unilateral incremental VOR adaptation technique and horizontal active (self-generated, predictable) head impulses as the vestibular stimulus. Both active and passive (imposed, unpredictable) head impulse VOR gains were measured before and after unilateral incremental VOR adaptation training. The adapting side was pseudo-randomized for left or right. We tested ten normal subjects over one block (10 sessions over 12 days) of VOR adaptation training and testing, immediately followed by a second block (5 sessions over 19 days) of testing only without training. Our findings show robust short-term VOR adaptation of ~ 10 % immediately after each 15-min training session, but that the daily pre-adaptation gain was most different on days 1 and 2, and for subsequent training days before saturating to ~ 5 % greater than the pre-adaptation gain on day 1. This increase was partially retained for 19 days after regular training stopped. The data suggest that stable vision in normal subjects is maintained when there is < 5 % deviation in VOR gain from the original baseline, which corresponds to < 9°/s retinal image slip. Below this threshold, there is poor adaptive drive to return the gain to its original baseline value.


Subject(s)
Adaptation, Physiological , Reflex, Vestibulo-Ocular , Retina/physiology , Sensory Thresholds , Adult , Female , Healthy Volunteers , Humans , Male , Middle Aged
3.
J Assoc Res Otolaryngol ; 19(5): 601-610, 2018 10.
Article in English | MEDLINE | ID: mdl-30120621

ABSTRACT

We sought to determine if separating vestibulo-ocular reflex (VOR) adaptation training into training blocks with a consolidation (rest) period in between repetitions would result in improved VOR adaptation and retention. Consolidation of motor learning refers to the brain benefitting from a rest period after prior exposure to motor training. The role of consolidation on VOR adaptation is unknown, though clinicians often recommend rest periods as a part of vestibular rehabilitation. The VOR is the main gaze stabilising system during rapid head movements. The VOR is highly plastic and its gain (eye/head velocity) can be increased via training that induces an incrementally increasing retinal image slip error signal to drive VOR adaptation. The unilateral incremental adaptation technique typically consists of one 15-min training block leading to an increase in VOR gain of ~ 10 % towards the training side. We tested nine normal subjects, each over six separate sessions/days. Three training protocols/sessions were 5 min each (1 × 5-min training) and three training protocols/sessions were 55 min each. Each 55-min protocol comprised 5-min training, 20-min rest, 5-min training, 20-min rest, 5-min training (3 × 5-min training). Active and passive VOR gains were measured before and after training. For training with consolidation breaks, VOR gain retention was measured over 1 h. The VOR gain increase after 1 × 5-min training was 3.1 ± 2.1 % (P < 0.01). One might expect that repeating this training three times would result in × 3 total increase of 9.3 %; however, the gain increase after 3 × 5-min training was only 7.1 ± 2.8 % (P < 0.001), suggesting that consolidation did not improve VOR adaptation for our protocols. However, retention was improved by the addition of consolidation breaks, i.e. gains did not decrease over 1 h (P = 0.43). These data suggest that for optimal retention VOR adaptation exercises should be performed over shorter repeated blocks.


Subject(s)
Adaptation, Physiological , Reflex, Vestibulo-Ocular/physiology , Adult , Humans , Time Factors
4.
J Assoc Res Otolaryngol ; 19(3): 261-271, 2018 06.
Article in English | MEDLINE | ID: mdl-29464411

ABSTRACT

The vestibulo-ocular reflex (VOR) is the main vision-stabilising system during rapid head movements in humans. A visual-vestibular mismatch stimulus can be used to train or adapt the VOR response because it induces a retinal image slip error signal that drives VOR motor learning. The training context has been shown to affect VOR adaptation. We sought to determine whether active (self-generated) versus passive (externally imposed) head rotation vestibular training would differentially affect adaptation and short-term retention of the active and passive VOR responses. Ten subjects were tested, each over six separate 1.5-h sessions. We compared active versus passive head impulse (transient, rapid head rotations with peak velocity ~ 150 °/s) VOR adaptation training lasting 15 min with the VOR gain challenged to increment, starting at unity, by 0.1 every 90 s towards one side only (this adapting side was randomised to be either left or right). The VOR response was tested/measured in darkness at 10-min intervals, 20-min intervals, and two single 60-min interval sessions for 1 h post-training. The training was active or passive for the 10- and 20-min interval sessions, but only active for the two single 60-min interval sessions. The mean VOR response increase due to training was ~ 10 % towards the adapting side versus ~2 % towards the non-adapting side. There was no difference in VOR adaptation and retention between active and passive VOR training. The only factor to affect retention was exposure to a de-adaptation stimulus. These data suggest that active VOR adaptation training can be used to optimally adapt the passive VOR and that adaptation is completely retained over 1 h as long as there is no visual feedback signal driving de-adaptation.


Subject(s)
Adaptation, Physiological , Reflex, Vestibulo-Ocular , Adult , Head Movements , Humans , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...