Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Int Soc Prev Community Dent ; 9(6): 542-552, 2019.
Article in English | MEDLINE | ID: mdl-32039073

ABSTRACT

INTRODUCTION: iRoot BP Plus, also known as EndoSequence root repair material (EERM) is a premixed bioceramic thick/putty. According to its instruction manual, iRoot BP Plus is composed of tricalcium silicate, zirconium oxide, tantalum pentoxide, dicalcium silicate, calcium sulfate, calcium phosphate monobasic, and filler agents. This systematic review was carried out to evaluate and present the iRoot BP Plus material as a pulp-capping agent. MATERIALS AND METHODS: A systematic search for articles with the scope of the selection criteria undergoing for data extraction was conducted through electronic databases. Studies on evaluation of the cytotoxicity, bioactivity, and dentinal bridge formation of iRoot BP, iRoot BP Plus, ERRM putty, or ERRM paste (ERRM) on variant human cells were selected for in vitro models, and dentinal bridge formation on human and animals teeth for in vivo models were selected. RESULTS: A total of 22 articles were discussed in the review, 14 in vitro studies, five in vivo studies, and three articles with both studies. Methyl thiazol tetrazolium was the most used method for evaluating cytotoxicity. As for dentinal bridge formation, histological assessment and micro-Computed tomography were used. Human dental pulp cells (hDPCs) were the most investigated for in vitro models and rats for in vivo models. Except for one study, all studies involved in this review were primarily examining the material and comparing it to different types of mineral trioxide aggregate. CONCLUSION: iRoot BP, iRoot BP Plus, and ERRM are biocompatible materials that enhance hDPCs and other variant human cells proliferation, migration, attachment adhesion, mineralization, and dentinal bridge formation.

2.
J Int Soc Prev Community Dent ; 9(6): 637-645, 2019.
Article in English | MEDLINE | ID: mdl-32039085

ABSTRACT

AIM: A major challenge in orthodontics is decreasing treatment time without compromising treatment outcome. The purpose of this split-mouth trial was to evaluate micro-osteoperforations (MOPs) in accelerating orthodontic tooth movement. MATERIALS AND METHODS: Eight patients of both genders were selected, age ranging between 15 and 40 years, with Class II Division 1 malocclusion. The participants in this trial with MOPs were randomly allocated to either the right or the left side, distal to the maxillary canine. First maxillary premolars were extracted as part of the treatment plan on both sides and then canine retraction was applied. Miniscrews were used to support anchorage. MOP side received (three small perforations) placed on the buccal bone, distal to the maxillary canine, on randomly selected side using an automated mini-implant driver and the other side was the control side. Blinding was used at the data collection and analysis stages. The primary outcome was the rate of canine retraction measured with a three-dimensional (3D) digital model from the baseline to the first 2 weeks superimposed at the rugae area from the baseline to the first, second, and third months. The following secondary outcomes were examined: anchorage loss, canine tipping, canine rotation, root resorption, plaque index, and gingival index. Pain level, pain interference with the patients' daily life, patients' satisfaction with the procedure and degree of ease, willingness to repeat the procedure, and recommendation to others were also evaluated. RESULTS: No statistically significant difference was observed in the rates of tooth movement between the MOP and the control sides at all-time points (first month: P = 0.77; mean difference, 0.2 mm; 95% CI, -0.13, 0.18 mm; second month: P = 0.50; mean difference, -0.08 mm; 95% CI, -0.33, 0.16 mm; third month: P = 0.76; mean difference, -0.05 mm; 95% CI, -0.40, 0.29 mm). There were also no differences in anchorage loss, rotation, tipping, root resorption, plaque index, periodontal index, and pain perception between the MOP and control sides at any time point (P > 0.05). MOPs had no effect on the patients' daily life except for a feeling of swelling on the first day (P = 0.05). Level of satisfaction and degree of easiness of the procedure were high. CONCLUSION: According to our clinical trial, MOPs cannot help in speeding up a canine retraction.

SELECTION OF CITATIONS
SEARCH DETAIL
...