Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Rep ; 12(1): 17486, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36261481

ABSTRACT

Wild relatives of modern crops represent a promising source of genetic variation that can be mined for adaptations to climate change. Aegilops tauschii, the D-sub-genome progenitor of bread wheat (Triticum aestivum), constitutes a reservoir of genetic diversity for improving bread wheat performance and environmental resilience. Leaf hairiness plays an essential biological role in plant defense against biotic and abiotic stress. We investigated the natural variation in leaf hair density (LHD) among 293 Ae. tauschii accessions. Genome-wide association studies were performed for LHD with 2430 and 3880 DArTseq derived single nucleotide polymorphism (SNP) markers in two lineages of this species, TauL1 and TauL2, respectively. In TauL1, three marker-trait associations (MTAs) were located on chromosome 2D, whereas in TauL2, eight MTAs were identified, two associations were localized on each of the chromosomes 2D, 3D, 5D, and 7D. The markers explained phenotypic variation (R2) from 9 to 13% in TauL1 and 11 to 36% in TauL2. The QTLs identified in chromosomes 2D and 5D might be novel. Our results revealed more rapid and independent evolution of LHD in TauL2 compared to TauL1. The majority of LHD candidate genes identified are associated with biotic and abiotic stress responses. This study highlights the significance of intraspecific diversity of Ae. tauschii to enhance cultivated wheat germplasm.


Subject(s)
Aegilops , Aegilops/genetics , Triticum/genetics , Genome-Wide Association Study , Quantitative Trait Loci , Plant Leaves
2.
Plants (Basel) ; 10(2)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499189

ABSTRACT

Aegilops tauschii, the D-genome donor of bread wheat, is a storehouse of genetic diversity that can be used for wheat improvement. This species consists of two main lineages (TauL1 and TauL2) and one minor lineage (TauL3). Its morpho-physiological diversity is large, with adaptations to a wide ecological range. Identification of allelic diversity in Ae. tauschii is of utmost importance for efficient breeding and widening of the genetic base of wheat. This study aimed at identifying markers or genes associated with morpho-physiological traits in Ae. tauschii, and at understanding the difference in genetic diversity between the two main lineages. We performed genome-wide association studies of 11 morpho-physiological traits of 343 Ae. tauschii accessions representing the entire range of habitats using 34,829 DArTseq markers. We observed a wide range of morpho-physiological variation among all accessions. We identified 23 marker-trait associations (MTAs) in all accessions, 15 specific to TauL1 and eight specific to TauL2, suggesting independent evolution in each lineage. Some of the MTAs could be novel and have not been reported in bread wheat. The markers or genes identified in this study will help reveal the genes controlling the morpho-physiological traits in Ae. tauschii, and thus in bread wheat even if the plant morphology is different.

SELECTION OF CITATIONS
SEARCH DETAIL
...