Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Res Toxicol ; 36(6): 822-837, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37208809

ABSTRACT

Cisplatin (CP) is a common antitumor drug that is used to treat many solid tumors. The activity of CP is attributed to the formation of DNA-DNA cross-links, which consist of 1,2-intra-, 1,3-intra-, and interstrand cross-links. To better understand how each intrastrand cross-link contributes to the activity of CP, we have developed comprehensive ultraperformance liquid chromatography-selective ion monitoring (UPLC-SIM) assays to quantify 1,2-GG-, 1,2-AG-, 1,3-GCG-, and 1,3-GTG-intrastrand cross-links. The limit of quantitation for the developed assays ranged from 5 to 50 fmol or as low as 6 cross-links per 108 nucleotides. To demonstrate the utility of the UPLC-SIM assays, we first performed in vitro cross-link formation kinetics experiments. We confirmed that the 1,2-GG-intrastrand cross-links were the most abundant intrastrand cross-link and formed at a faster rate compared to 1,2-AG- and 1,3-intrastrand cross-links. Furthermore, we investigated the repair kinetics of intrastrand cross-links in CP-treated wild-type and nucleotide excision repair (NER)-deficient U2OS cells. We observed a slow decrease of both 1,2- and 1,3-intrastrand cross-links in wild-type cells and no evidence of direct repair in the NER-deficient cells. Taken together, we have demonstrated that our assays are capable of accurately quantifying intrastrand cross-links in CP-treated samples and can be utilized to better understand the activity of CP.


Subject(s)
Cisplatin , DNA Adducts , Cisplatin/pharmacology , DNA/chemistry , Chromatography, Liquid , Mass Spectrometry , DNA Repair , Cross-Linking Reagents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...