Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Nature ; 603(7903): 815-818, 2022 03.
Article in English | MEDLINE | ID: mdl-35354998

ABSTRACT

Galaxy clusters magnify background objects through strong gravitational lensing. Typical magnifications for lensed galaxies are factors of a few but can also be as high as tens or hundreds, stretching galaxies into giant arcs1,2. Individual stars can attain even higher magnifications given fortuitous alignment with the lensing cluster. Recently, several individual stars at redshifts between approximately 1 and 1.5 have been discovered, magnified by factors of thousands, temporarily boosted by microlensing3-6. Here we report observations of a more distant and persistent magnified star at a redshift of 6.2 ± 0.1, 900 million years after the Big Bang. This star is magnified by a factor of thousands by the foreground galaxy cluster lens WHL0137-08 (redshift 0.566), as estimated by four independent lens models. Unlike previous lensed stars, the magnification and observed brightness (AB magnitude, 27.2) have remained roughly constant over 3.5 years of imaging and follow-up. The delensed absolute UV magnitude, -10 ± 2, is consistent with a star of mass greater than 50 times the mass of the Sun. Confirmation and spectral classification are forthcoming from approved observations with the James Webb Space Telescope.

3.
Science ; 366(6466): 738-741, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31699936

ABSTRACT

During the epoch of reionization, neutral gas in the early Universe was ionized by hard ultraviolet radiation emitted by young stars in the first galaxies. To do so, ionizing ultraviolet photons must escape from the host galaxy. We present Hubble Space Telescope observations of the gravitationally lensed post-reionization galaxy PSZ1-ARC G311.6602-18.4624 (nicknamed the "Sunburst Arc"), revealing bright, multiply imaged ionizing photon escape from a compact star-forming region through a narrow channel in an optically thick gas. The gravitational lensing magnification shows how ionizing photons escape this galaxy, contributing to the reionization of the Universe. The multiple sight lines to the source probe absorption by intergalactic neutral hydrogen on a scale of less than a few hundred parsecs.

SELECTION OF CITATIONS
SEARCH DETAIL
...