Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Deliv Transl Res ; 12(5): 1118-1135, 2022 05.
Article in English | MEDLINE | ID: mdl-33895936

ABSTRACT

The present study is concerned with the QbD-based design and development of luliconazole-loaded nanostructured lipid carriers (NLCs) hydrogel for enhanced skin retention and permeation. The NLCs formulation was optimized employing a 3-factor, 3-level Box-Behnken design. The effect of formulation variable lipid content, surfactant concentration, and sonication time was studied on particle size and % EE. The optimized formulation exhibited particle size of 86.480 ± 0.799 nm; 0.213 ± 0.004 PDI, ≥ - 10 mV zeta potential and 85.770 ± 0.503% EE. The in vitro release studies revealed sustained release of NLCs up to 42 h. The designed formulation showed desirable occlusivity, spreadability (0.748 ± 0.160), extrudability (3.130 ± 1.570), and the assay was found to be 99.520 ± 0.890%. The dermatokinetics assessment revealed the Cmax Skin to be ~ 2-fold higher and AUC0-24 to be ~ 3-fold higher in the epidermis and dermis of NLCs loaded gel in contrast with the marketed cream. The Tmax of both the formulations was found to be 6 h in the epidermis and dermis. The obtained results suggested that luliconazole NLCs can serve as a promising formulation to enhance luliconazole's antifungal activity and also in increasing patient compliance by reducing the frequency of application.


Subject(s)
Drug Carriers , Nanostructures , Humans , Imidazoles , Lipids , Particle Size
2.
Drug Deliv Transl Res ; 12(10): 2359-2384, 2022 10.
Article in English | MEDLINE | ID: mdl-34845678

ABSTRACT

For the past few years, there has been a surge in the use of nutraceuticals. The global nutraceuticals market in 2020 was USD 417.66 billion, and the market value is expected to increase by 8.9% compound annual growth rate from 2020 to 2028. This is because nutraceuticals are used to treat and prevent various diseases such as cancer, skin disorders, gastrointestinal, ophthalmic, diabetes, obesity, and central nervous system-related diseases. Nutritious food provides the required amount of nutrition to the human body through diet, whereas most of the bioactive agents present in the nutrients are highly lipophilic, with low aqueous solubility leading to poor dissolution and oral bioavailability. Also, the nutraceuticals like curcumin, carotenoids, anthocyanins, omega-3 fatty acids, vitamins C, vitamin B12, and quercetin have limitations such as poor solubility, chemical instability, bitter taste, and an unpleasant odor. Additionally, the presence of gastrointestinal (GIT) membrane barriers, varied pH, and reaction with GIT enzymes cause the degradation of some of the nutraceuticals. Nanotechnology-based nutrient delivery systems can be used to improve oral bioavailability by increasing nutraceutical stability in foods and GIT, increasing nutraceutical solubility in intestinal fluids, and decreasing first-pass metabolism in the gut and liver. This article has compiled the properties and applications of various nanocarriers such as polymeric nanoparticles, micelles, liposomes, niosomes, solid lipid nanocarriers, nanostructured lipid carrier, microemulsion, nanoemulsion, dendrimers in organic nanoparticles, and nanocomposites for effective delivery of bioactive molecules.


Subject(s)
Anthocyanins , Nanoparticles , Biological Availability , Drug Delivery Systems , Humans , Lipids/chemistry , Liposomes , Nutrients
3.
Expert Opin Drug Deliv ; 18(12): 1829-1842, 2021 12.
Article in English | MEDLINE | ID: mdl-34826250

ABSTRACT

INTRODUCTION: Investigating the transportation of a drug molecule through various layers of skin and determining the amount of drug retention in skin layers is of prime importance in transdermal and topical drug delivery. The information regarding drug permeation and retention in skin layers aids in optimizing a formulation and provides insight into the therapeutic efficacy of a formulation. AREAS COVERED: This perspective covers various methods that have been explored to estimate drug/therapeutics in skin layers using in vitro, ex vivo, and in vivo conditions. In vitro methods such as diffusion techniques, ex vivo methods such as isolated perfused skin models and in vivo techniques including dermato-pharmacokinetics employing tape stripping, and microdialysis are discussed. Application of all techniques at various stages of formulation development where various local and systemic effects need to be considered. EXPERT OPINION: The void in the existing methodologies necessitates improvement in the field of dermatologic research. Standardization of protocols, experimental setups, regulatory guidelines, and further research provides information to select an alternative for human skin to perform skin permeation experiments to increase the reliability of data generated through the available techniques. There is a need to utilize multiple techniques for appropriate dermato-pharmacokinetics evaluation and formulation's efficacy.


Subject(s)
Pharmaceutical Preparations , Skin Absorption , Administration, Cutaneous , Humans , Pharmaceutical Preparations/metabolism , Reproducibility of Results , Skin/metabolism
4.
Chem Phys Lipids ; 234: 105028, 2021 01.
Article in English | MEDLINE | ID: mdl-33309940

ABSTRACT

Fungal infections are an important cause of morbidity and pose a serious health concern especially in immunocompromised patients. Luliconazole (LUL) is a topical imidazole antifungal drug with a broad spectrum of activity. To overcome the limitations of conventional dosage forms, LUL loaded lyotropic liquid crystalline nanoparticles (LCNP) were formulated and characterized using a three-factor, five-level Central Composite Design of Response Surface Methodology. LUL loaded LCNP showed particle size of 181 ± 12.3 nm with an entrapment efficiency of 91.49 ± 1.61 %. The LUL-LCNP dispersion in-vitro drug release showed extended release up to 54 h. Ex-vivo skin permeation studies revealed transdermal flux value (J) of LUL-LCNP gel (7.582 µg/h/cm2) 2 folds higher compared to marketed cream (3.3706 µg/h/cm2). The retention of LUL in the stratum corneum was ∼1.5 folds higher and ∼2 folds higher in the epidermis and other deeper layers in comparison to the marketed cream. The total amount of drug penetrated (AUC0-∞) with LCNP formulation was 4.7 folds higher in epidermis and 6.5 folds higher in dermis than marketed cream. The study's findings vouch that LCNP can be a promising and effective carrier system for the delivery of antifungal drugs with enhanced skin permeation.


Subject(s)
Antifungal Agents/chemistry , Imidazoles/chemistry , Liquid Crystals/chemistry , Nanoparticles/chemistry , Skin/chemistry , Administration, Cutaneous , Antifungal Agents/administration & dosage , Humans , Imidazoles/administration & dosage , Particle Size , Skin/metabolism
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 235: 118310, 2020 Jul 05.
Article in English | MEDLINE | ID: mdl-32251894

ABSTRACT

The present study elucidates the development of an accurate, precise and simple simultaneous estimation method for the routine analysis of Betamethasone Valerate (BV) and Tazarotene (TZ). This combination is widely used in the treatment of psoriasis. No method has been reported so far for the simultaneous estimation of BV and TZ in topical dosage forms. The method proposed by this study for the quantification of BV and TZ is the Absorption factor method. The developed method was validated as per the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guideline. The validated method was found to be linear in a concentration range of 10-38 µg/mL and 4-14 µg/mL for BV and TZ respectively with a regression coefficient >0.990. The method was validated for accuracy and precision which revealed the recovery of >99.80% with RSD <2.0. The method was found to be precise with RSD <2% for inter and intraday. The developed method was employed for quantification of BV and TZ in lipid based nanocarriers formulation and their in-vitro drug release samples. Further, the developed method was successfully applied for the estimation of BV and TZ in the ex-vivo skin matrix. This showed that the method can sensitively determine the drugs in aqueous and biological samples.


Subject(s)
Betamethasone Valerate/analysis , Lipids/chemistry , Nicotinic Acids/analysis , Skin/drug effects , Spectrophotometry, Ultraviolet , Administration, Topical , Calibration , Chemistry, Pharmaceutical/methods , Humans , In Vitro Techniques , Limit of Detection , Microscopy, Atomic Force , Nanotechnology , Regression Analysis , Reproducibility of Results , Solubility , Solvents/chemistry
6.
Recent Pat Drug Deliv Formul ; 13(4): 283-290, 2019.
Article in English | MEDLINE | ID: mdl-31951173

ABSTRACT

Age-related Macular Degeneration (AMD) is one of the common diseases affecting the posterior part of the eye, of a large population above 45 years old. Anti-Vascular Endothelial Growth Factor- A (Anti-VEGF-A) agents have been considered and approved as therapeutic agents for the treatment of AMD. Due to the large molecular weight and poor permeability through various eye membranes, VEGF-A inhibitors are given through an intravitreal injection, even though the delivery of small therapeutic molecules by topical application to the posterior part of the eye exhibits challenges in the treatment. To overcome these limitations, nanocarrier based delivery systems have been utilized to a large extent for the delivery of therapeutics. Nanocarriers system offers prodigious benefits for the delivery of therapeutics to the posterior part of the eye in both invasive and non-invasive techniques. The nano size can improve the permeation of therapeutic agent across the biological membranes. They provide protection from enzymes present at the site, targeted delivery or binding with the disease site and extend the release of therapeutic agents with prolonged retention. This leads to improved therapeutic efficacy, patient compliance, and cost effectiveness of therapy with minimum dose associated side-effects. This review has summarized various nanocarriers explored for the treatment of AMD and challenges in translation.


Subject(s)
Drug Delivery Systems , Macular Degeneration/drug therapy , Nanostructures , Administration, Ophthalmic , Animals , Drug Carriers/chemistry , Humans , Intravitreal Injections , Macular Degeneration/physiopathology , Middle Aged , Particle Size , Vascular Endothelial Growth Factor A/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...