Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 204: 274-283, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35120942

ABSTRACT

Due to phase heterogeneity in semi-crystalline polymers, accurate determination of gas solubility has been a challenge. In this regard, PLA/CO2 was used as a case study to investigate the parameters governing formation of the rigid amorphous fraction (RAF) and its effect on the gas sorption behavior of the polymer. Six samples with different degrees of RAF were prepared through varying PLA tacticity and thermal history. Then, a gravimetric method involving a magnetic suspension balance and an in-house PVT visualization system was employed to experimentally determine the CO2 solubility at 70 °C under a pressure of 4.5 MPa. Furthermore, a theoretical CO2 solubility was calculated based on the Simha-Somcynski equation of state and was used in conjunction with the two-phase and three-phase models to describe the phase dependency of the gas solubility. The conventional two-phase model that considered the bulk amorphous phase consistently over-approximated the CO2 solubility compared to the measured data. On the other hand, the three-phase model that distinguished the rigid and the mobile amorphous phases well represented the experimental result. The analysis yielded CO2 solubility coefficients of 0.0375 ggas/gpoly for the RAF and 0.0817 ggas/gpoly for the mobile counterpart.


Subject(s)
Carbon Dioxide , Polyesters , Crystallization , Solubility , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL