Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Pathol ; 56(2): 322-331, 2019 03.
Article in English | MEDLINE | ID: mdl-30381013

ABSTRACT

Lipin-1 ( Lpin1)-deficient lipodystrophic mice have scant and immature adipocytes and develop transient fatty liver early in life. Unlike normal mice, these mice cannot rely on stored triglycerides to generate adenosine triphosphate (ATP) from the ß-oxidation of fatty acids during periods of fasting. To compensate, these mice store much higher amounts of glycogen in skeletal muscle and liver than wild-type mice in order to support energy needs during periods of fasting. Our studies demonstrated that there are phenotypic changes in skeletal muscle fibers that reflect an adaptation to this unique metabolic situation. The phenotype of skeletal muscle (soleus, gastrocnemius, plantaris, and extensor digitorum longus [EDL]) from Lpin1-/- was evaluated using various methods including immunohistochemistry for myosin heavy chains (Myh) 1, 2, 2a, 2b, and 2x; enzyme histochemistry for myosin ATPase, cytochrome-c oxidase (COX), and succinyl dehydrogenase (SDH); periodic acid-Schiff; and transmission electron microscopy. Fiber-type changes in the soleus muscle of Lpin1-/- mice were prominent and included decreased Myh1 expression with concomitant increases in Myh2 expression and myosin-ATPase activity; this change was associated with an increase in the presence of Myh1/2a or Myh1/2x hybrid fibers. Alterations in mitochondrial enzyme activity (COX and SDH) were apparent in the myofibers in the soleus, gastrocnemius, plantaris, and EDL muscles. Electron microscopy revealed increases in the subsarcolemmal mitochondrial mass in the muscles of Lpin1-/- mice. These data demonstrate that lipin-1 deficiency results in phenotypic fiber-specific modulation of skeletal muscle necessary for compensatory fuel utilization adaptations in lipodystrophy.


Subject(s)
Lipodystrophy/pathology , Muscle, Skeletal/pathology , Nuclear Proteins/deficiency , Phosphatidate Phosphatase/deficiency , Animals , Disease Models, Animal , Female , Lipodystrophy/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Microscopy, Electron, Transmission , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Fast-Twitch/pathology , Muscle Fibers, Fast-Twitch/ultrastructure , Muscle Fibers, Slow-Twitch/metabolism , Muscle Fibers, Slow-Twitch/pathology , Muscle Fibers, Slow-Twitch/ultrastructure , Muscle, Skeletal/ultrastructure , Nuclear Proteins/genetics , Phenotype , Phosphatidate Phosphatase/genetics
2.
Dev Biol ; 416(2): 373-88, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27217161

ABSTRACT

Adprhl1, a member of the ADP-ribosylhydrolase protein family, is expressed exclusively in the developing heart of all vertebrates. In the amphibian Xenopus laevis, distribution of its mRNA is biased towards actively growing chamber myocardium. Morpholino oligonucleotide-mediated knockdown of all Adprhl1 variants inhibits striated myofibril assembly and prevents outgrowth of the ventricle. The resulting ventricles retain normal electrical conduction and express markers of chamber muscle differentiation but are functionally inert. Using a cardiac-specific Gal4 binary expression system, we show that the abundance of Adprhl1 protein in tadpole hearts is tightly controlled through a negative regulatory mechanism targeting the 5'-coding sequence of Xenopus adprhl1. Over-expression of full length (40kDa) Adprhl1 variants modified to escape such repression, also disrupts cardiac myofibrillogenesis. Disarrayed myofibrils persist that show extensive branching, with sarcomere division occurring at the actin-Z-disc boundary. Ultimately, Adprhl1-positive cells contain thin actin threads, connected to numerous circular branch points. Recombinant Adprhl1 can localize to stripes adjacent to the Z-disc, suggesting a direct role for Adprhl1 in modifying Z-disc and actin dynamics as heart chambers grow. Modelling the structure of Adprhl1 suggests this cardiac-specific protein is a pseudoenzyme, lacking key residues necessary for ADP-ribosylhydrolase catalytic activity.


Subject(s)
Actin Cytoskeleton/physiology , Gene Expression Regulation, Developmental , Myocardium/cytology , N-Glycosyl Hydrolases/physiology , Xenopus Proteins/physiology , Animals , Animals, Genetically Modified , Gene Knockdown Techniques , Heart/embryology , Heart/growth & development , Heart Ventricles/embryology , Heart Ventricles/growth & development , Humans , Larva , Luminescent Proteins/analysis , Luminescent Proteins/genetics , Mice , Models, Molecular , Molecular Dynamics Simulation , Morpholinos/pharmacology , Mutation , Myocardium/metabolism , N-Glycosyl Hydrolases/biosynthesis , N-Glycosyl Hydrolases/genetics , Organogenesis , Protein Conformation , RNA, Messenger/biosynthesis , Recombinant Fusion Proteins/metabolism , Xenopus Proteins/biosynthesis , Xenopus Proteins/genetics , Xenopus laevis/embryology , Xenopus laevis/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...