Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 196(1): 37, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38093159

ABSTRACT

Soil erosion is a destructive consequence of land degradation caused by deforestation, improper farming practices, overgrazing, and urbanization. This irreversible effect negatively impacts the limited renewable soil resource, causing soil truncation, reduced fertility, and unstable slopes. To address the anticipation of erosion modulus resulting from long-term land use and land cover (LULC) changes, a study was conducted in the Swat District of Khyber Pakhtunkhwa (Kpk), Pakistan. The study aimed to predict and evaluate soil erosion concerning these changes using remote sensing (RS), geographic information systems (GIS), and the Revised Universal Soil Loss Equation (RUSLE) model. We also evaluated the impact of the Billion Tree Tsunami Project (BTTP) on soil erosion in the region. Model inputs, such as rainfall erosivity factor, topography factor, land cover and management factor, and erodibility factor, were used to calculate soil erosion. The results revealed that significant soil loss occurred under 2001, 2011, and 2021 LULC conditions, accounting for 67.26%, 61.78%, and 65.32%, falling within the category of low erosion potential. The vulnerable topographical features of the area indicated higher erosion modulus. The maximum soil loss rates observed in 2001, 2011, and 2021 were 80 t/ha-1/year-1, 120 t/ha-1/year-1, and 96 t/ha-1/year-1, respectively. However, the observed reduction in soil loss in 2021 as compared to 2001 and 2011 suggests a positive influence of the BTTP on soil conservation efforts. This study underscores the potential of afforestation initiatives like the BTTP in mitigating soil erosion and highlights the significance of environmental conservation programs in regions with vulnerable topography.


Subject(s)
Environmental Monitoring , Soil , Environmental Monitoring/methods , Conservation of Natural Resources/methods , Geographic Information Systems , Soil Erosion
2.
Environ Monit Assess ; 192(9): 584, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32808098

ABSTRACT

In this study, we investigate stand-alone and combined Pleiades high-resolution passive optical and ALOS PALSAR active Synthetic Aperture Radar (SAR) satellite imagery for aboveground biomass (AGB) estimation in subtropical mountainous Chir Pine (Pinus roxburghii) forest in Murree Forest Division, Punjab, Pakistan. Spectral vegetation indices (NDVI, SAVI, etc.) and sigma nought HV-polarization backscatter dB values are derived from processing optical and SAR datasets, respectively, and modeled against field-measured AGB values through various regression models (linear, nonlinear, multi-linear). For combination of multiple spectral indices, NDVI, TNDVI, and MSAVI2 performed the best with model R2/RMSE values of 0.86/47.3 tons/ha. AGB modeling with SAR sigma nought dB values gives low model R2 value of 0.39. The multi-linear combination of SAR sigma nought dB values with spectral indices exhibits more variability as compared with the combined spectral indices model. The Leave-One-Out-Cross-Validation (LOOCV) results follow closely the behavior of the model statistics. SAR data reaches AGB saturation at around 120-140 tons/ha, with the region of high sensitivity around 50-130 tons/ha; the SAR-derived AGB results show clear underestimation at higher AGB values. The models involving only spectral indices underestimate AGB at low values (< 60 tons/ha). This study presents biomass estimation maps of the Chir Pine forest in the study area and also the suitability of optical and SAR satellite imagery for estimating various biomass ranges. The results of this work can be utilized towards environmental monitoring and policy-level applications, including forest ecosystem management, environmental impact assessment, and performance-based REDD+ payment distribution.


Subject(s)
Pinus , Radar , Biomass , Ecosystem , Environmental Monitoring , Forests , Pakistan , Remote Sensing Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...