Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 410: 135425, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36634559

ABSTRACT

Malachite green (MG), as a parasiticide, is widely used in aquaculture to increase the production of the fishery industry. It poses a great danger to both the food system and the human body. In this study, a one-pot reverse microemulsion polymerization was employed to combine the gold nanoclusters (AuNCs) with molecularly imprinted polymers (MIPs) and covalent organic frameworks (COFs) to synthesize an efficient fluorescent hybrid probe (AuNCs@COFs@MIPs) for selective detection of MG. The specific recognition of AuNCs@COFs@MIPs towards MG triggers the fluorescence quenching of AuNCs. The fluorescent response was linearly related to the concentration over the range of 10-150 nmol/L with a limit of detection of 2.78 nmol/L. In addition, the proposed probe was further applied to fish and water samples. A favorable recovery ranged from 97.34 to 101.51 % toward trace amounts of MG indicating its promising application for detecting residue of veterinary drugs.


Subject(s)
Metal-Organic Frameworks , Molecular Imprinting , Quantum Dots , Animals , Humans , Metal-Organic Frameworks/chemistry , Limit of Detection , Gold/chemistry , Quantum Dots/chemistry , Fluorescent Dyes/chemistry
2.
Food Chem ; 309: 125513, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-31683147

ABSTRACT

The present study aims at synthesizing and in vitro antibacterial activity evaluation of chitosan oligosaccharide (COS) modified by Cinnamyl alcohol (Cin) onto the OH position of COS. Three different degrees of substitution (DS) COS-O-Cin1-3 were synthesized by changing different molar ratios of COS to Cin. UV-visible spectroscopy (UV-vis), Fourier transform infrared (FT-IR), 1H nuclear magnetic resonance (1H NMR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and elemental analysis were conducted to characterize the successful synthesis of COS-O-Cin1-3. The results showed that they exhibited higher thermal stability, weaker crystallinity and better antibacterial properties than that of COS. These results aided in obtaining the important supports for exploring new functional antibacterial agents, which expand the scope of COS's application in the food industry.


Subject(s)
Chitosan/chemistry , Chitosan/pharmacology , Propanols/chemistry , Propanols/pharmacology , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chitosan/analysis , Chitosan/chemical synthesis , Escherichia coli/drug effects , Magnetic Resonance Spectroscopy , Propanols/analysis , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , X-Ray Diffraction
3.
Enzyme Microb Technol ; 131: 109427, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31615684

ABSTRACT

d-Ribulose and l-fuculose are potentially valuable rare sugars useful for anticancer and antiviral drugs in the agriculture and medicine industries. These rare sugars are usually produced by chemical methods, which are generally expensive, complicated and do not meet the increasing demands. Furthermore, the isomerization of d-arabinose and l-fucose byDd-arabinose and l-fucose by d-arabinose isomerase from bacterial sources for the production of d-ribulose and l-fuculose have not yet become industrial due to the shortage of biocatalysts, resulting in poor yield and high cost of production. In this study, a thermostable d-ribulose- and l-fuculose producing d-arabinose isomerase from the bacterium Thermanaeromonas toyohensis was characterized. The recombinant d-arabinose isomerase from T. toyohensis (Thto-DaIase) was purified with a single band at 66 kDa using His-trap affinity chromatography. The native enzyme existed as a homotetramer with a molecular weight of 310 kDa, and the specific activities for both d-arabinose and l-fucose were observed to be 98.08 and 85.52 U mg-1, respectively. The thermostable recombinant Thto-DaIase was activated when 1 mM Mn2+ was added to the reactions at an optimum pH of 9.0 at 75 °C and showed approximately 50% activity for both d-arabinose and l-fucose at 75 °C after 10 h. The Michaelis-Menten constant (Km), the turnover number (kcat) and catalytic efficiency (kcat/Km) for d-arabinose/l-fucose were 111/81.24 mM, 18,466/10,688 min-1, and 166/132 mM-1  min-1, respectively. When the reaction reached to equilibrium, the conversion rates of d-ribulose from d-arabinose and l-fuculose from l-fucose were almost 27% (21 g L-1) and 24.88% (19.92 g L-1) from 80 g L-1 of d-arabinose and l-fucose, respectively.


Subject(s)
Aldose-Ketose Isomerases/genetics , Aldose-Ketose Isomerases/metabolism , Arabinose/metabolism , Firmicutes/enzymology , Hexoses/metabolism , Pentoses/metabolism , Aldose-Ketose Isomerases/chemistry , Aldose-Ketose Isomerases/isolation & purification , Enzyme Stability , Hot Temperature , Hydrogen-Ion Concentration , Kinetics , Molecular Weight , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...