Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Sci Rep ; 14(1): 10960, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744950

ABSTRACT

The relationship between gut microbiota and obesity has recently been an important subject for research as the gut microbiota is thought to affect body homeostasis including body weight and composition, intervening with pro and prebiotics is an intelligent possible way for obesity management. To evaluate the effect of hypo caloric adequate fiber regimen with probiotic supplementation and physical exercise, whether it will have a good impact on health, body composition, and physique among obese Egyptian women or has no significant effect. The enrolled 58 women, in this longitudinal follow-up intervention study; followed a weight loss eating regimen (prebiotic), including a low-carbohydrate adequate-fiber adequate-protein dietary pattern with decreased energy intake. They additionally received daily probiotic supplements in the form of yogurt and were instructed to exercise regularly for 3 months. Anthropometric measurements, body composition, laboratory investigations, and microbiota analysis were obtained before and after the 3 months weight loss program. Statistically highly significant differences in the anthropometry, body composition parameters: and obesity-related biomarkers (Leptin, ALT, and AST) between the pre and post-follow-up measurements at the end of the study as they were all decreased. The prebiotic and probiotic supplementation induced statistically highly significant alterations in the composition of the gut microbiota with increased relative abundance of Lactobacillus, Bifidobacteria, and Bacteroidetes and decreased relative abundance of Firmicutes and Firmicutes/Bacteroidetes Ratio. Hypo caloric adequate fiber regimen diet with probiotics positively impacts body composition and is effective for weight loss normalizing serum Leptin and AST.


Subject(s)
Body Composition , Gastrointestinal Microbiome , Obesity , Prebiotics , Probiotics , Humans , Probiotics/administration & dosage , Female , Prebiotics/administration & dosage , Adult , Longitudinal Studies , Obesity/therapy , Obesity/diet therapy , Obesity/microbiology , Weight Reduction Programs/methods , Weight Loss , Middle Aged , Exercise
2.
Sci Rep ; 14(1): 5464, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38443406

ABSTRACT

Metabolic syndrome (MetS) is defined as a cluster of glucose intolerance, hypertension, dyslipidemia, and central obesity with insulin resistance. The role of gut microbiota in metabolic disorders is increasingly considered. To investigate the effects of probiotic supplements and hypocaloric high fiber regimen on MetS in obese Egyptian women. A longitudinal follow-up intervention study included 58 obese Egyptian women, with a mean age of 41.62 ± 10.70 years. They were grouped according to the criteria of MetS into 2 groups; 23 obese women with MetS and 35 ones without MetS. They followed a hypocaloric high fiber regimen weight loss program, light physical exercise, and received a probiotic supplement daily for 3 months. For each participating woman, blood pressure, anthropometric measurements, basal metabolic rate (BMR), dietary recalls, laboratory investigations, and microbiota analysis were acquired before and after 3 months of follow-up. After intervention by the probiotic and hypocaloric high fiber regimen and light exercise, reduction ranged from numerical to significant difference in the anthropometric parameters, blood pressure, and BMR was reported. All the biochemical parameters characterized by MetS decreased significantly at p ≤ 0.05-0.01. Before the intervention, results revealed abundant of Bacteroidetes bacteria over Firmicutes with a low Firmicutes/Bacteroidetes ratio. After the intervention, Log Lactobacillus, Log Bifidobacteria, and Log Bacteroidetes increased significantly in both groups, while Log Firmicutes and the Firmicutes/Bacteroidetes Ratio revealed a significant decrease. In conclusion, this study's results highlight a positive trend of probiotics supplementation with hypocaloric high-fiber diets in amelioration of the criteria of the Mets in obese Egyptian women.


Subject(s)
Metabolic Syndrome , Female , Humans , Adult , Middle Aged , Metabolic Syndrome/therapy , Dysbiosis/therapy , Egypt , Clinical Protocols , Obesity/complications , Obesity/therapy , Bacteroidetes , Firmicutes
3.
Sci Rep ; 14(1): 4970, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424295

ABSTRACT

This study investigates the structural intricacies and properties of single-walled nanotubes (SWNT) and double-walled nanotubes (DWNT) composed of hexagonal boron nitride (BN) and carbon (C). Doping with various atoms including light elements (B, N, O) and heavy metals (Fe, Co, Cu) is taken into account. The optimized configurations of SWNT and DWNT, along with dopant positions, are explored, with a focus on DWNT-BN-C. The stability analysis, employing binding energies, affirms the favorable formation of nanotube structures, with DWNT-C emerging as the most stable compound. Quantum stability assessments reveal significant intramolecular charge transfer in specific configurations. Electronic properties, including charge distribution, electronegativity, and electrical conductivity, are examined, showcasing the impact of doping. Energy gap values highlight the diverse electronic characteristics of the nanotubes. PDOS analysis provides insights into the contribution of atoms to molecular orbitals. UV-Vis absorption spectra unravel the optical transitions, showcasing the influence of nanotube size, dopant type, and location. Hydrogen storage capabilities are explored, with suitable adsorption energies indicating favorable hydrogen adsorption. The desorption temperatures for hydrogen release vary across configurations, with notable enhancements in specific doped DWNT-C variants, suggesting potential applications in high-temperature hydrogen release. Overall, this comprehensive investigation provides valuable insights into the structural, electronic, optical, and hydrogen storage properties of BN and C nanotubes, laying the foundation for tailored applications in electronics and energy storage.

4.
Sci Rep ; 14(1): 889, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195577

ABSTRACT

This study focuses on the design of new 2D membranes from connected Clar's Goblet as a potential sensor for pharmaceutical pollutants, specifically the painkiller drugs aspirin, paracetamol, ibuprofen, and diclofenac. The electronic, optical, and interaction properties are investigated using density functional theory calculations. The Clar's Goblet membranes (CGMs) that were chosen are semiconductors with an energy gap of around 1.5 eV, according to energy gap calculations and density of states. Molecular electrostatic potential (ESP) analysis shows that CGMs have electrophilic and nucleophilic sites, suggesting their suitability for interacting with pharmaceutical pollutants. The adsorption energies confirm the chemical adsorption of pharmaceutical pollutants with diclofenac showing the strongest adsorption. The UV-Vis absorption spectra of CGMs-drug complexes are analyzed, revealing a redshift compared to the absorption spectrum of CGMs alone, confirming the adsorption of these drugs. Further analysis using hole/electron examinations indicates that the type of excitation is local excitation rather than charge transfer excitation. This study quantitatively characterized hole and electron distribution in excited states using various indices. The analysis revealed local excitation transitions and significant charge transfer between the CGMs molecule and pharmaceutical pollutants. Additionally, non-covalent interaction analysis indicates the presence of van der Waals interactions, highlighting the adsorption behavior of the drugs. These results demonstrate the potential of CGMs as a highly sensitive sensor for pharmaceutical pollutants.


Subject(s)
Diclofenac , Environmental Pollutants , Adsorption , Acetaminophen , Pharmaceutical Preparations
5.
J Fluoresc ; 34(2): 945-960, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37436616

ABSTRACT

In this study, we investigated the reactivity of γ-graphyne (Gp) and its derivatives, Gp-CH3, Gp-COOH, Gp-CN, Gp-NO2, and Gp-SOH, for the removal of toxic heavy metal ions (Hg+ 2, Pb+ 2, and Cd+ 2) from wastewater. From the analysis of the optimized structures, it was observed that all the compounds exhibited planar geometry. The dihedral angles (C9-C2-C1-C6 and C9-C2-C1-C6) were approximately 180.00°, indicating planarity in all molecular arrangements. To understand the electronic properties of the compounds, the HOMO (EH) and LUMO (EL) energies were calculated, and their energy gaps (Eg) were determined. The EH and EL values ranged between - 6.502 and - 8.192 eV and - 1.864 and - 3.773 eV, respectively, for all the compounds. Comparing the EH values, Gp-NO2 exhibited the most stable HOMO, while Gp-CH3 had the least stable structure. In terms of EL values, Gp-NO2 had the most stable LUMO, while Gp-CH3 was the least stable. The Eg values followed the order: Gp-NO2 < Gp-COOH < Gp-CN < Gp-SOH < Gp-CH3 < Gp, with Gp-NO2 (4.41 eV) having the smallest energy gap. The density of states (DOS) analysis showed that the shape and functional group modifications affected the energy levels. Functionalization with electron-withdrawing (CN, NO2, COOH, SOH) or electron-donating (CH3) groups reduced the energy gap. To specifically target the removal of heavy metal ions, the Gp-NO2 ligand was selected for its high binding energy. Complexes of Gp-NO2-Cd, Gp-NO2-Hg, and Gp-NO2-Pb were optimized, and their properties were analyzed. The complexes were found to be planar, with metal-ligand bond distances within the range of 2.092→3.442 Å. The Gp-NO2-Pb complex exhibited the shortest bond length, indicating a stronger interaction due to the smaller size of Pb+ 2. The computed adsorption energy values (Eads) indicated the stability of the complexes, with values ranging from - 0.035 to -4.199 eV. Non-covalent interaction (NCI) analysis was employed to investigate intermolecular interactions in Gp-NO2 complexes. The analysis revealed distinct patterns of attractive and repulsive interactions, providing valuable insights into the binding preferences and steric effects of heavy metals.

6.
Sci Rep ; 13(1): 15535, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726390

ABSTRACT

We employed density functional theory calculations to investigate the electronic and optical characteristics of finite GaAs nanoribbons (NRs). Our study encompasses chemical alterations including doping, functionalization, and complete passivation, aimed at tailoring NR properties. The structural stability of these NRs was affirmed by detecting real vibrational frequencies in infrared spectra, indicating dynamical stability. Positive binding energies further corroborated the robust formation of NRs. Analysis of doped GaAs nanoribbons revealed a diverse range of energy gaps (approximately 2.672 to 5.132 eV). The introduction of F atoms through passivation extended the gap to 5.132 eV, while Cu atoms introduced via edge doping reduced it to 2.672 eV. A density of states analysis indicated that As atom orbitals primarily contributed to occupied molecular orbitals, while Ga atom orbitals significantly influenced unoccupied states. This suggested As atoms as electron donors and Ga atoms as electron acceptors in potential interactions. We investigated excited-state electron-hole interactions through various indices, including electron-hole overlap and charge-transfer length. These insights enriched our understanding of these interactions. Notably, UV-Vis absorption spectra exhibited intriguing phenomena. Doping with Te, Cu, W, and Mo induced redshifts, while functionalization induced red/blue shifts in GaAs-34NR spectra. Passivation, functionalization, and doping collectively enhanced electrical conductivity, highlighting the potential for improving material properties. Among the compounds studied, GaAs-34NR-edg-Cu demonstrated the highest electrical conductivity, while GaAs-34NR displayed the lowest. In summary, our comprehensive investigation offers valuable insights into customizing GaAs nanoribbon characteristics, with promising implications for nanoelectronics and optoelectronics applications.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123116, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37459665

ABSTRACT

The adoption of chlorine in drinking water disinfection with the determination of residual chlorine in the form of hypochlorite ion (ClO-) is in widespread demand. Several sensors including colorimetric, fluorometric, and electrochemical methods are currently in use, but detection limits and ease of application remain a challenge. In this work, two new cyanine derivatives-based ClO- sensors, that were prepared by solvent-free microwave synthesis, are reported. The two sensors are highly sensitive and selective to ClO-, exhibiting a noticeable color change visible to the naked eye. Additionally, the sensors can detect ClO- without interference from other potential water pollutants, with low detection limits of 7.43 ppb and 0.917 ppb based on absorption performance. When using fluorometric methods, the sensors' detection limits are pushed down to 0.025 ppb and 0.598 ppb for sensors I and II, respectively. The sensors can be loaded with paper strips for field and domestic detection of ClO- in tap water treatment installations. Using the quartz crystal microbalance (QCM) technique, these sensors showed strong detection sensitivity to ClO-, with detection limits of 0.256 ppm and 0.09 ppm for sensors I and II, respectively. Quantum chemical studies using density functional theory (DFT) calculations, natural bond orbital (NBO) analysis, molecular electrostatic potential (MESP), and time-dependent density functional theory (TD-DFT) supported the findings. The sensing mechanism is rationalized in terms of radical cation formation upon ClO- oxidation of cyanine sensors I and II.

8.
Sci Rep ; 12(1): 17291, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36241870

ABSTRACT

Metabolic syndrome (MetS) is a phenotype caused by the interaction of host intrinsic factors such as genetics and gut microbiome, and extrinsic factors such as diet and lifestyle. To demonstrate the interplay of intestinal microbiota with obesity, MetS markers, and some dietary ingredients among samples of Egyptian women. This study was a cross-sectional one that included 115 Egyptian women; 82 were obese (59 without MetS and 23 with MetS) and 33 were normal weight. All participants were subjected to anthropometric assessment, 24 h dietary recall, laboratory evaluation of liver enzymes (AST and ALT), leptin, short chain fatty acids (SCFA), C-reactive protein, fasting blood glucose, insulin, and lipid profile, in addition to fecal microbiota analysis for Lactobacillus, Bifidobacteria, Firmicutes, and Bacteroid. Data showed that the obese women with MetS had the highest significant values of the anthropometric and the biochemical parameters. Obese MetS women consumed a diet high in calories, protein, fat, and carbohydrate, and low in fiber and micronutrients. The Bacteroidetes and Firmicutes were the abundant bacteria among the different gut microbiota, with low Firmicutes/Bacteroidetes ratio, and insignificant differences between the obese with and without MetS and normal weight women were reported. Firmicutes/Bacteroidetes ratio significantly correlated positively with total cholesterol and LDL-C and negatively with SCFA among obese women with MetS. Findings of this study revealed that dietary factors, dysbiosis, and the metabolic product short chain fatty acids have been implicated in causing metabolic defects.


Subject(s)
Gastrointestinal Microbiome , Insulins , Metabolic Syndrome , Bacteroidetes , Blood Glucose , C-Reactive Protein , Cholesterol, LDL , Cross-Sectional Studies , Eating , Egypt , Fatty Acids, Volatile , Female , Firmicutes , Humans , Leptin , Metabolic Syndrome/metabolism , Micronutrients , Obesity/microbiology
9.
Chemosphere ; 308(Pt 3): 136581, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36162514

ABSTRACT

Pure water is a key element for a sustainable and healthy environment of human inhabitation. Since major sources of water contamination are industrially generated heavy metal cations there is great demand for efficient methods of their treatment. Here, using density functional theory, we investigate the covalent organic framework's electronic and optical properties and their interaction with the most dangerous heavy metal pollutants, namely Hg+2, Pb+2, and Cd+2. We consider biphenyl boroxine covalent organic frameworks before and after chemical modification with CN, COOH, NH2, and NO2 groups. In addition to the molecular geometries, such parameters as the dipole moment, chemical potential, electronegativity, chemical hardness, and binding energy are calculated. It is found that CN, COOH, and NO2 functional groups are favorable for intermolecular bonding with harmful transition metals. The functionalization with the mentioned groups reduces the band gap of the pristine covalent organic frameworks and increases their reactivity. As a result, strong complexes with Cd+2, Hg+2, and Pb+2 can form, which, as follows from our calculations, can be detected by the red shift in their optical absorption spectra.


Subject(s)
Environmental Pollutants , Mercury , Metal-Organic Frameworks , Metals, Heavy , Cadmium , Cations , Humans , Lead , Metal-Organic Frameworks/chemistry , Metals, Heavy/chemistry , Nitrogen Dioxide , Water
10.
J Fluoresc ; 32(6): 2257-2269, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36045307

ABSTRACT

Colloidal metallic nanoparticles have attracted a lot of interest in the last two decades owing to their simple synthesis and fascinating optical properties. In this manuscript, a study of the effect of both gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs) on the fluorescence emission (FE) of TPPS has been investigated utilizing steady-state fluorescence spectroscopy and UV-Vis spectrophotometry. From the observed electronic absorption spectra, there is no evidence of the ground state interaction between metallic Au NPs or Ag NPs with TPPS. On the other side, the FE spectra of TPPS have been quenched by both Ag and Au NPs. Via applying quenching calculations, Ag NPs showed only traditional static fluorescence quenching of TPPS with linear Stern-Volmer (SV) plots. On the contrary, quenching of TPPS emission by Au NPs shows composed models. One model is the sphere of action static quenching model that prevails at high quencher concentrations leading to non-linear SV plots with positive deviation. However, at low Au NPs concentrations, traditional dynamic quenching occurs with linear SV plots. The quantum calculations for TPPS structure have been obtained using Gaussian 09 software: in which the TPPS optimized molecular structure was achieved using DFT/B3LYP/6-311G (d) in a gaseous state. Also, the calculated electronic absorption spectra for the same molecule in water as a solvent are obtained using TD/M06/6-311G + + (2d, 2p). Furthermore, the theoretical and experimental results comparable to UV-Vis spectra have been investigated.


Subject(s)
Metal Nanoparticles , Porphyrins , Gold/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Porphyrins/chemistry , Water , Solvents
11.
J Fluoresc ; 32(6): 2053-2063, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35861897

ABSTRACT

In this manuscript, we report four series for 1,2,4-triazine derivatives as dye-sensitized solar cells (DSSCs). Density functional theory (DFT) methods via utilizing Becke's three-parameter functional and LeeeYangeParr functional (B3LYP) level with 6-31G (d, p) basis set to investigate their modeling molecular structures. Optimized molecular structures for studied molecular structures are obtained using the DFT/B3LYP/6-31G (d, p) method. In addition, the time-dependant density functional theory (TD-DFT) is used to study the optoelectronic properties and absorption spectra using DFT/CAM-B3LYP/ 6-31G + + (d, p) level in the Gaussian 09 program. The highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), energy gap (Eg), light harvest efficiency (LHE), and open-circuit voltage (Voc) of the studied molecular structures are calculated and illustrated. These properties indicate that these molecular modeling structures as good candidates for utilization in organic DSSCs.

12.
J Fluoresc ; 32(5): 1857-1871, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35737283

ABSTRACT

Due to numerous pharmaceutical and biological activities hydrazone (TC) based materials, it was important to investigate quantum chemical studies such as Density functional theory (DFT) calculations, natural bond orbital (NBO) analysis, molecular electrostatic potential (MESP), and local reactivity usage Fukui function for six TC derivatives compounds. DFT, NBO, MESP, and local reactivity calculations were obtained via utilizing CAM-Becke's three-parameter functional and Leee Yange Parr (CAM-B3LYP) functional and 6-311G + + (2d, 2p) basis set. Optimized molecular structures for all studied compounds were obtained usage the DFT/CAM-B3LYP/6-311G + + (2d, 2p) method. In addition, the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), energy gap (Eg), light harvest efficiency (LHE), and open-circuit voltage (Voc) of all studied MSs are calculated and illustrated. These properties indicate that these molecular modeling structures as good candidates for utilization in organic DSSCs. The calculated spectroscopic investigations of hydrazine derivatives have been obtained by applying the TD/CAM-B3LYP/6-311G + + (2d, 2p) method. the calculated UV-Vis absorption spectra for molecular structures under study show nice correlations with experimental spectra.


Subject(s)
Hydrazones , Spectrum Analysis, Raman , Density Functional Theory , Molecular Conformation , Quantum Theory , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Static Electricity
13.
ACS Nano ; 16(4): 5682-5695, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35385658

ABSTRACT

The ability to apply and measure high forces (>10 pN) on the nanometer scale is critical to the development of nanomedicine, molecular robotics, and the understanding of biological processes such as chromatin condensation, membrane deformation, and viral packaging. Established force spectroscopy techniques including optical traps, magnetic tweezers, and atomic force microscopy rely on micron-sized or larger handles to apply forces, limiting their applications within constrained geometries including cellular environments and nanofluidic devices. A promising alternative to these approaches is DNA-based molecular calipers. However, this approach is currently limited to forces on the scale of a few piconewtons. To study the force application capabilities of DNA devices, we implemented DNA origami nanocalipers with tunable mechanical properties in a geometry that allows application of force to rupture a DNA duplex. We integrated static and dynamic single-molecule characterization methods and statistical mechanical modeling to quantify the device properties including force output and dynamic range. We found that the thermally driven dynamics of the device are capable of applying forces of at least 20 piconewtons with a nanometer-scale dynamic range. These characteristics could eventually be used to study other biomolecular processes such as protein unfolding or to control high-affinity interactions in nanomechanical devices or molecular robots.


Subject(s)
DNA , Nanotechnology , DNA/chemistry , Nanotechnology/methods , Microscopy, Atomic Force , Optical Tweezers , Mechanical Phenomena
14.
Nucleic Acids Res ; 50(6): 3445-3455, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35253884

ABSTRACT

Concatemers of d(TCCC) that were first detected through their association with deletions at the RACK7 locus, are widespread throughout the human genome. Circular dichroism spectra show that d(GGGA)n sequences form G-quadruplexes when n > 3, while i-motif structures form at d(TCCC)n sequences at neutral pH when n ≥ 7 in vitro. In the PC3 cell line, deletions are observed only when the d(TCCC)n variant is long enough to form significant levels of unresolved i-motif structure at neutral pH. The presence of an unresolved i-motif at a representative d(TCCC)n element at RACK7 was suggested by experiments showing that that the region containing the d(TCCC)9 element was susceptible to bisulfite attack in native DNA and that d(TCCC)9 oligo formed an i-motif structure at neutral pH. This in turn suggested that that the i-motif present at this site in native DNA must be susceptible to bisulfite mediated deamination even though it is a closed structure. Bisulfite deamination of the i-motif structure in the model oligodeoxynucleotide was confirmed using mass spectrometry analysis. We conclude that while G-quadruplex formation may contribute to spontaneous mutation at these sites, deletions actually require the potential for i-motif to form and remain unresolved at neutral pH.


Subject(s)
G-Quadruplexes , Circular Dichroism , DNA/chemistry , DNA/genetics , Genome, Human , Humans , Hydrogen-Ion Concentration
15.
J Complement Integr Med ; 19(2): 389-398, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-34109772

ABSTRACT

OBJECTIVES: Evaluate the association between overweight/obesity with serum gonadotropin and androgen levels in Egyptian pubertal girls. SUBJECTS AND METHODS: A case-control study carried out in "Obesity Clinic" of "Diabetes, Endocrine and Metabolism Pediatric Unit (DEMPU)", Pediatric Hospital, Cairo University. It included 40 overweight and obese girls and 40 age-matching normal weight (control) ones, aged 12-18 years. Anthropometric assessment (weight, height and hip and waist circumferences) was done, and waist/hip and BMI were calculated. Laboratory investigations: lipid profile, serum gonadotropin (LH, FSH), androgen (free and total testosterone), estradiol, insulin, and FBG were quantified, while insulin resistance (IR) was calculated. RESULTS: Hypogonadotropins (FSH and LH) and hyperandrogenaemia (total and free testosterone) were significantly prominent among obese girls. Correlation between gonadotropin, androgen and all of the studied variables, for the three studied groups (obese, overweight and control) revealed constant relations. Gonadotropin and androgens showed opposing correlations. Gonadotropin had significant negativ e correlations with the anthropometric parameters of obesity (BMI, Waist C, and W/H ratio), insulin, insulin resistance and lipid profile (triglycerides, total cholesterol and LDL), whereas androgens had significant positiv e ones. In addition, gonadotropin showed significant positiv e correlations with estradiol and HDL, while androgens showed significant negative ones. CONCLUSIONS: Overweight/obesity had no effect on the correlations between gonadotropin and androgen on one side, with the anthropometric measurements and laboratory investigations on the other one. Alterations in androgen levels occur at earlier ages than gonadotropin, among both overweight and obese girls.


Subject(s)
Insulin Resistance , Overweight , Adolescent , Androgens , Body Mass Index , Case-Control Studies , Child , Egypt , Estradiol , Female , Follicle Stimulating Hormone , Humans , Insulin , Obesity , Testosterone , Triglycerides
16.
J Genet Eng Biotechnol ; 19(1): 115, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34351532

ABSTRACT

BACKGROUND: Vitamin D receptor (VDR) is known as one of the cellular regulators for several metabolic pathways indicating its pivotal role in the pathological pathway of numerous diseases. Considering the high frequency of osteoporosis and obesity among women, the current study aimed to explore the prospective assembly of the most frequent two VDR loci, single nucleotide polymorphism SNPs rs731236 (TaqI) and rs7975232 (ApaI) with a genetic predisposition to osteoporosis (skeletal) and obesity (chronic non-skeletal disorders), in Egyptian women. This was a cross-sectional study, including 97 Egyptian females (25-65 years), randomly chosen, from all employees and workers of the National Research Centre, Egypt. Anthropometric measurements (weight, height, BMI), dual-energy X-ray absorptiometry (DEXA), and molecular genetic analysis were done. RESULTS: The variation of ApaI genotype between the normal and osteoporotic groups denotes a remarkable association of the homozygote ApaI genotype with osteoporosis risk. Among the normal weight group, bone mineral density (BMD) was significantly associated with TaqI VDR gene polymorphism as the presence of the heterozygote genotype was accompanied with higher BMD while the homozygote one was detected with lower BMD. Also, TaqI VDR gene polymorphism was significantly associated with BMI when participants were divided according to the presence of osteoporosis; increased BMI was expressed in the non-osteoporotic women group carrying the homozygote genotype of Taq I VDR gene while the presence of the heterozygote genotype (TaqI) in the osteoporotic group was associated with increased BMI. CONCLUSIONS: The heterozygote TaqI genotype is protective against the osteoporosis phenotype and accompanied with increased BMI among osteoporotic women, while the homozygote ApaI genotype has a significant association with osteoporosis risk.

17.
J Mol Model ; 27(9): 256, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34414525

ABSTRACT

This manuscript includes some photophysical parameters and some optical properties such as absorption and emission spectra of the (E, E)-2,5-bis (3,4-dimethoxystyryl) pyrazine (BDP) by applying sol-gel and copolymer matrices. The BDP molecular structure is incorporated in sol-gel matrix and copolymer of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA). In case of sol-gel matrix, the BDP molecular structure has higher quantum yield in addition to photostability maxima. The laser behavior of this molecular structure containing sol-gel matrix is good senior compared to copolymer one via using diode laser (450 nm) as pumping laser of power 160 mW. Also, the fluorescence profile of the BDP molecular structure is sensitized via using cadmium sulfide (CdS) quantum dots (QDs) by applying sol-gel host. The optimized structure of the BDP molecule is obtained via applying B3LYP/6-31G(d) level of theory. The electronic absorption and emission spectra of the BDP molecular structure in ethanol solvent were calculated using time-dependent density functional theory (TDDFT) at CAM-B3LYP/6-31G + + (d, p) level. The obtained theoretical results were compared to experimental ones.

18.
J Vis Exp ; (173)2021 07 05.
Article in English | MEDLINE | ID: mdl-34279510

ABSTRACT

The smfBox is a recently developed cost-effective, open-source instrument for single-molecule Förster Resonance Energy Transfer (smFRET), which makes measurements on freely diffusing biomolecules more accessible. This overview includes a step-by-step protocol for using this instrument to make measurements of precise FRET efficiencies in duplex DNA samples, including details of the sample preparation, instrument setup and alignment, data acquisition, and complete analysis routines. The presented approach, which includes how to determine all the correction factors required for accurate FRET-derived distance measurements, builds on a large body of recent collaborative work across the FRET Community, which aims to establish standard protocols and analysis approaches. This protocol, which is easily adaptable to a range of biomolecular systems, adds to the growing efforts in democratising smFRET for the wider scientific community.


Subject(s)
Fluorescence Resonance Energy Transfer , Nanotechnology , DNA , Diffusion
19.
J Nat Prod ; 84(5): 1617-1625, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33974416

ABSTRACT

Heliomycin (also known as resistomycin) is an antibiotic with a broad spectrum of biological activities. However, low aqueous solubility and poor knowledge of its chemical properties have limited the development of this natural product. Here, we present an original scheme for the introduction of aminoalkylamine residues at positions 3, 5, and 7 of heliomycin and, using this, have prepared a series of novel water-soluble derivatives. The addition of side chains to the heliomycin scaffold significantly improves their interaction with different DNA secondary structures. One derivative, 7-deoxy-7-(2-aminoethyl)amino-10-O-methylheliomycin (8e), demonstrated affinity, stabilization potential, and good selectivity toward i-motif-forming DNA sequences over the duplex and G-quadruplex. Heliomycin derivatives therefore represent promising molecular scaffolds for further development as DNA-i-motif interacting ligands and potential chemotherapeutic agents.


Subject(s)
DNA/chemistry , Polycyclic Compounds/chemistry , Animals , Cell Line , G-Quadruplexes , Humans , Mice , Nucleic Acid Conformation , Solubility , Water
20.
J Genet Eng Biotechnol ; 19(1): 28, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33559788

ABSTRACT

BACKGROUND: Although many environmental factors play an important role in bone mass density (BMD) variation, genetic influences account for 60-85% of individual variance. The aim of this study was to find the interaction between some dietary ingredients, vitamin D, estrogen, and obesity polymorphic receptor genes, among a sample of obese Egyptian women. This was a cross sectional study included 97 women (aged 25-60 years). Data on anthropometry, dietary intake, BMD, biochemical, and genetic analyses were collected. RESULTS: Osteoporosis was high among women had dominant Taq1 vitamin D receptor gene while osteoporosis was less common among the homozygous Apa1 receptor gene women. Both genes in their two forms did not show any effect on serum vitamin D. Heterozygous types of osteoporotic women carried both genes revealed a slight but significant decrease in level of serum calcium. Xba1 estrogen receptor gene was identified only in a homozygous type while the heterozygous Pvu11 estrogen receptors gene has been identified among both osteoporotic and non-osteoporotic women, this gene was associated with higher BMI in both groups compared to the homozygous receptor gene. Mutant types of genotype FTOrs99 and FTOrs80 obesity receptors genes were less common (4.44%, 11%) among participants. Both of these genes were associated with the highest value of BMI and caloric daily intake, fat, and saturated fatty acid that were more prominent among osteoporotic women. CONCLUSION: There is significant association between vitamin D, estrogen, obesity receptors genes, special nutrients, and osteoporosis. Increased BMI, calories, and fat intake lead to rise of genetic predisposition and susceptibility to osteoporosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...