Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(41): 29023-29034, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37799306

ABSTRACT

The potentiality of the 6-mercaptopurine (MP) and 6-thioguanine (TG) expired drugs toward the corrosion inhibition of the aluminium (Al) (111) surface was widely investigated using a series of density functional theory (DFT) calculations. A competition between the anti-corrosive features of the studied drugs in the gas and aqueous phases was conducted on both neutral and protonated forms by means of quantum mechanical descriptors. The results of the electrostatic potential analysis demonstrated the prominent nucleophilic nature of the sulfur and nitrogen atoms over the structures of the examined drugs. The frontier molecular orbital theory findings outlined the higher preferability of TG over MP as a corrosion inhibitor. Upon determining the most beneficial configurations of the MP/TG⋯Al (111) complexes, first-principles molecular dynamics simulations were executed. Interestingly, the competence of the TG drug in the corrosion inhibition process of Al (111) was more extensive than that of the MP one, which was confirmed by the interaction energy values of -1.79 and -1.64 eV, respectively. Upon obtaining the relaxed complexes, the effect of the presence of water solvent on the adsorption process was studied. These findings provide a foundation for developing green anti-corrosive inhibitors for the aluminium surface.

2.
Molecules ; 28(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37513348

ABSTRACT

The potentiality of the ß12 borophene (ß12) and pristine graphene (GN) nanosheets to adsorb tetrahalomethanes (CX4; X = F, Cl, and Br) were investigated using density functional theory (DFT) methods. To provide a thorough understanding of the adsorption process, tetrel (XC-X3∙∙∙ß12/GN)- and halogen (X3C-X∙∙∙ß12/GN)-oriented configurations were characterized at various adsorption sites. According to the energetic manifestations, the adsorption process of the CX4∙∙∙ß12/GN complexes within the tetrel-oriented configuration led to more desirable negative adsorption energy (Eads) values than that within the halogen-oriented analogs. Numerically, Eads values of the CBr4∙∙∙Br1@ß12 and T@GN complexes within tetrel-/halogen-oriented configurations were -12.33/-8.91 and -10.03/-6.00 kcal/mol, respectively. Frontier molecular orbital (FMO) results exhibited changes in the EHOMO, ELUMO, and Egap values of the pure ß12 and GN nanosheets following the adsorption of CX4 molecules. Bader charge transfer findings outlined the electron-donating property for the CX4 molecules after adsorbing on the ß12 and GN nanosheets within the two modeled configurations, except the adsorbed CBr4 molecule on the GN sheet within the tetrel-oriented configuration. Following the adsorption process, new bands and peaks were observed in the band structure and density of state (DOS) plots, respectively, with a larger number in the case of the tetrel-oriented configuration than in the halogen-oriented one. According to the solvent effect affirmations, adsorption energies of the CX4∙∙∙ß12/GN complexes increased in the presence of a water medium. The results of this study will serve as a focal point for experimentalists to better comprehend the adsorption behavior of ß12 and GN nanosheets toward small toxic molecules.

3.
Pharmaceutics ; 15(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37376088

ABSTRACT

Graphene (GN) nanosheets have been widely exploited in biomedical applications as potential nanocarriers for various drugs due to their distinct physical and chemical properties. In this regard, the adsorption behavior of cisplatin (cisPtCl2) and some of its analogs on a GN nanosheet was investigated in perpendicular and parallel configurations by using density functional theory (DFT). According to the findings, the most significant negative adsorption energies (Eads) within the cisPtX2⋯GN complexes (where X = Cl, Br, and I) were observed for the parallel configuration, with values up to -25.67 kcal/mol at the H@GN site. Within the perpendicular configuration of the cisPtX2⋯GN complexes, three orientations were investigated for the adsorption process, namely, X/X, X/NH3, and NH3/NH3. The negative Eads values of the cisPtX2⋯GN complexes increased with the increasing atomic weight of the halogen atom. The Br@GN site showed the largest negative Eads values for the cisPtX2⋯GN complexes in the perpendicular configuration. The Bader charge transfer outcomes highlighted the electron-accepting properties of cisPtI2 within the cisPtI2⋯GN complexes in both configurations. The electron-donating character of the GN nanosheet increased as the electronegativity of the halogen atom increased. The band structure and density of state plots revealed the occurrence of the physical adsorption of the cisPtX2 on the GN nanosheet, which was indicated by the appearance of new bands and peaks. Based on the solvent effect outlines, the negative Eads values generally decreased after the adsorption process in a water medium. The recovery time results were in line with the Eads findings, where the cisPtI2 in the parallel configuration took the longest time to be desorbed from the GN nanosheet with values of 61.6 × 108 ms at 298.15 K. The findings of this study provide better insights into the utilization of GN nanosheets in drug delivery applications.

4.
RSC Adv ; 13(26): 17465-17475, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37304808

ABSTRACT

The efficiency of pristine graphene (GN) in the delivery process of the Favipiravir (FPV) anti-COVID-19 drug was herein revealed within the FPV⋯GN complexes in perpendicular and parallel configurations in terms of the density functional theory (DFT) method. Adsorption energy findings unveiled that the parallel configuration of FPV⋯GN complexes showed higher desirability than the perpendicular one, giving adsorption energy up to -15.95 kcal mol-1. This favorability could be interpreted as a consequence of the contribution of π-π stacking to the overall strength of the adsorption process in the parallel configuration. Frontier molecular orbitals (FMO) findings demonstrated the ability of the GN nanosheet to adsorb the FPV drug by the alteration in the EHOMO, ELUMO, and Egap values before and after the adsorption process. Based on Bader charge results, the FPV drug and GN sheet exhibited electron-donating and -accepting characters, respectively, which was confirmed by the negative sign of the computed charge transfer (Qt) values. The FPV(R)⋯T@GN complex showed the most desirable Qt value of -0.0377e, which was in synoptic with the adsorption energy pattern. Electronic properties of GN were also altered after the adsorption of the FPV drug in both configurations, with more observable changes in the parallel one. Interestingly, the Dirac point of the GN sheet coincided with the Fermi level after the adsorption process, indicating that the adsorption process unaffected the presence of the Dirac point. The occurrence of the adsorption process was also noticed by the existence of new bands and peaks in the band structure and DOS plots, respectively. Short recovery time rendered the GN nanosheet an efficient FPV drug delivery system. The obtained findings provide new insight into the biomedical applications of the GN sheet as a promising drug delivery system.

5.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36234539

ABSTRACT

The adsorption of toxic carbon dichalcogenides (CX2; X = O, S, or Se) on ß12 borophene (ß12) and pristine graphene (GN) sheets was comparatively investigated. Vertical and parallel configurations of CX2⋯ß12/GN complexes were studied herein via density functional theory (DFT) calculations. Energetic quantities confirmed that the adsorption process in the case of the parallel configuration was more desirable than that in the vertical analog and showed values up to −10.96 kcal/mol. The strength of the CX2⋯ß12/GN complexes decreased in the order CSe2 > CS2 > CO2, indicating that ß12 and GN sheets showed significant selectivity for the CSe2 molecule with superb potentiality for ß12 sheets. Bader charge transfer analysis revealed that the CO2⋯ß12/GN complexes in the parallel configuration had the maximum negative charge transfer values, up to −0.0304 e, outlining the electron-donating character of CO2. The CS2 and CSe2 molecules frequently exhibited dual behavior as electron donors in the vertical configuration and acceptors in the parallel one. Band structure results addressed some differences observed for the electronic structures of the pure ß12 and GN sheets after the adsorption process, especially in the parallel configuration compared with the vertical one. According to the results of the density of states, new peaks were observed after adsorbing CX2 molecules on the studied 2D sheets. These results form a fundamental basis for future studies pertaining to applications of ß12 and GN sheets for detecting toxic carbon dichalcogenides.

6.
Nanomaterials (Basel) ; 12(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35335843

ABSTRACT

The versatility of striped borophene (sB), ß12 borophene (ß12), and pristine graphene (GN) to adsorb π-systems was comparatively assessed using benzene (BNZ) and hexafluorobenzene (HFB) as electron-rich and electron-deficient aromatic π-systems, respectively. Using the density functional theory (DFT) method, the adsorption process of the π-systems on the investigated 2D sheets in the parallel configuration was observed to have proceeded more favorably than those in the vertical configuration. According to the observations of the Bader charge transfer analysis, the π-system∙∙∙sB complexes were generally recorded with the largest contributions of charge transfer, followed by the π-system∙∙∙ß12 and ∙∙∙GN complexes. The band structures of the pure sheets signaled the metallic and semiconductor characters of the sB/ß12 and GN surfaces, respectively. In the parallel configuration, the adsorption of both BNZ and HFB showed more valence and conduction bands compared to the adsorption in the vertical configuration, revealing the prominent preferentiality of the anterior configuration. The density-of-states (DOSs) results also affirmed that the adsorption process of the BNZ and HFB on the surface of the investigated 2D sheets increased their electrical properties. In all instances, the sB and ß12 surfaces demonstrated higher adsorptivity towards the BNZ and HFB than the GN analog. The findings of this work could make a significant contribution to the deep understanding of the adsorption behavior of aromatic π-systems toward 2D nanomaterials, leading, in turn, to their development of a wide range of applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...