Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Front Vet Sci ; 11: 1403920, 2024.
Article in English | MEDLINE | ID: mdl-38784661

ABSTRACT

Background: Anisakis are globally distributed, marine parasitic nematodes that can cause human health problems, including symptoms such as vomiting, acute diarrhea, and allergic reactions. As parasitic nematodes that primarily affect the patient's digestive tract, intestinal helminths can interact directly with the host microbiota through physical contact, chemicals, or nutrient competition. It is widely accepted that the host microbiota plays a crucial role in the regulation of immunity. Materials and methods: Nematodes collected from the abdominal cavity of marine fish were identified by molecular biology and live worms were artificially infected in rats. Infection was determined by indirect ELISA based on rat serum and worm extraction. Feces were collected for 16S rDNA-based analysis of microbiota diversity. Results: Molecular biology identification based on ITS sequences identified the collected nematodes as A. pegreffii. The success of the artificial infection was determined by indirect ELISA based on serum and worm extraction from artificially infected rats. Microbiota diversity analysis showed that a total of 773 ASVs were generated, and PCoA showed that the infected group was differentiated from the control group. The control group contained five characterized genera (Prevotellaceae NK3B31 group, Turicibacter, Clostridium sensu stricto 1, Candidatus Stoquefichus, Lachnospira) and the infected group contained nine characterized genera (Rodentibacter, Christensenella, Dubosiella, Streptococcus, Anaeroplasma, Lactococcus, Papillibacter, Desulfovibrio, Roseburia). Based on the Wilcoxon test, four processes were found to be significant: bacterial secretion system, bacterial invasion of epithelial cells, bacterial chemotaxis, and ABC transporters. Conclusion: This study is the first to analyze the diversity of the intestinal microbiota of rats infected with A. pegreffii and to determine the damage and regulation of metabolism and immunity caused by the infection in the rat gut. The findings provide a basis for further research on host-helminth-microbe correlationships.

2.
ACS Omega ; 9(20): 22123-22135, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38799342

ABSTRACT

Autoimmune disorders include vast and distinct illnesses and are characterized by an immune system-mediated attack on the body's own tissues. Because of their ability to impact any portion of the body, their clinical symptoms are incredibly varied. The variations in symptoms are normally linked with the release and activation of vasoactive, chemotactic substances and cytokines. Cytokines perform a multitude of vital biological tasks, such as immune response control, inflammation, proliferation, and tissue repair. The reversal of inflammatory cytokines and leukocyte infiltration into the inflamed tissue by natural compounds provides an effective remedy for autoimmune diseases. Here, the oral administration of trans-chalcone (TC) for 28 days was tested with gradually increasing doses (30, 60, and 120 mg/kg) in complete Freund's adjuvant (CFA)-provoked joint tissue stiffness in rats. Paw edema, arthritic index, joint stiffness, thermal and flexion pain, C-reactive protein, and rheumatoid factor (RF) levels were determined to check the tested drug effectiveness in a chronic inflammatory model. Molecular docking studies revealed strong binding affinity with inflammatory cytokines and mediators such as TNF-α, IL-17, COX-2, and iNOS; further, they were quantified at the mRNA level by RT-PCR and ELISA analysis. Oral administration of TC significantly ameliorated paw edema, thymus and spleen indices, joint stiffness, thermal and flexion pain, C-reactive protein, RF, mobility, and stance of the treated animals. This therapeutic effectiveness was linked with a reduction in the mRNA expression of proinflammatory cytokines such as IL-1ß, IL-6, and IL-17. The findings of the reported research confirmed the effectiveness of TC in ameliorating joint stiffness and flexion pain by prominently lowering the inflammatory cytokines.

3.
Int J Biol Macromol ; 266(Pt 2): 131145, 2024 May.
Article in English | MEDLINE | ID: mdl-38574932

ABSTRACT

Extracellular matrix (ECM) contains hyaluronic acid (HA) as its integral part that is involved in numerous functional activities within the body. Degradation of HA by hyaluronidase enzyme involved in many pathophysiological conditions such as asthma, arthritis, COPD and in venom spreading during envenomation. Inhibitor of hyaluronidase enzyme has a wide range of application along with the hyaluronan-hyaluronidase system. In this present study, we have evaluated the inhibitory effect of garcinol against hyaluronidase from Hippasa partita spider venom (HPHyal), bovine testicular hyaluronidase (BTH) and human serum hyaluronidase. Garcinia indica fruit rind has been used to isolate the active component garcinol. Garcinol has been used in treatment of diverse ailments. Garcinol has exhibited anti-oxidant, anti-inflammatory, HAT inhibition and miRNA deregulator in development and progression of cancers. Experimental data have shown that garcinol completely inhibited all the three tested hyaluronidase enzymes. The inhibition was found to be non-competitive pattern with reversible type. In the docking study, garcinol with hyaluronidase enzyme has been stabilized by hydrogen bonding and hydrophobic interactions. Thus, garcinol could be a potent novel inhibitor of hyaluronidase enzyme which can be further used for pharmacotherapeutic applications.


Subject(s)
Enzyme Inhibitors , Hyaluronoglucosaminidase , Molecular Docking Simulation , Terpenes , Hyaluronoglucosaminidase/antagonists & inhibitors , Hyaluronoglucosaminidase/metabolism , Humans , Terpenes/pharmacology , Terpenes/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Animals , Cattle
4.
J Cell Mol Med ; 28(8): e18196, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38534093

ABSTRACT

Liver cirrhosis is a silent disease in humans and is experimentally induced by many drugs and toxins as thioacetamide (TAA) in particular, which is the typical model for experimental induction of hepatic fibrosis. Thus, the objective of the present study was to elucidate the possible protective effects of lactéol® forte (LF) and quercetin dihydrate (QD) against TAA-induced hepatic damage in male albino rats. Induction of hepatotoxicity was performed by TAA injection (200 mg/kg I/P, twice/ week) in rats. LF (1 × 109 CFU/rat 5 times/week) and QD (50 mg/kg 5 times/week) treated groups were administered concurrently with TAA injection (200 mg/kg I/P, twice/ week). The experimental treatments were conducted for 12 weeks. Hepatotoxicity was evaluated biochemically by measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT) in the serum and histopathologically with the scoring of histopathological changes besides histochemical assessment of collagen by Masson's trichrome and immunohistochemical analysis for α-smooth muscle actin (α-SMA), Ki67 and caspase-3 expression in liver sections. Our results indicated that LF and QD attenuated some biochemical changes and histochemical markers in TAA-mediated hepatotoxicity in rats by amelioration of biochemical markers and collagen, α-SMA, Ki67 and caspase3 Immunoexpression. Additionally, LF and QD supplementation downregulated the proliferative, necrotic, fibroblastic changes, eosinophilic intranuclear inclusions, hyaline globules and Mallory-like bodies that were detected histopathologically in the TAA group. In conclusion, LF showed better hepatic protection than QD against TAA-induced hepatotoxicity in rats by inhibiting inflammatory reactions with the improvement of some serum hepatic transaminases, histopathological picture and immunohistochemical markers.


Subject(s)
Calcium Carbonate , Chemical and Drug Induced Liver Injury , Lactose , Quercetin , Humans , Rats , Male , Animals , Quercetin/pharmacology , Thioacetamide/toxicity , Ki-67 Antigen/metabolism , Liver Cirrhosis/metabolism , Liver/metabolism , Flavonoids/pharmacology , Chemical and Drug Induced Liver Injury/pathology , Collagen/metabolism , Oxidative Stress , Drug Combinations
5.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38399387

ABSTRACT

The objective of the present work was to develop and optimize an intranasal in situ gel of Pramipexole dihydrochloride for enhanced drug delivery, better patient acceptability, and possible proper treatment of Parkinson's disease. Preliminary studies were performed to select formulation components and identify key variables affecting the formulation. The optimization of the in situ gelling system of Pramipexole dihydrochloride was achieved by applying 32 full factorial design using Design-Expert® software (Stat-Ease 9.0.6 version) and taking concentrations of Poloxamer 407 (X1) and HPMC K4M (X2) as independent variables. The gelling temperature, gel strength, and percentage of drug diffused after 8 h were taken as dependent variables. The software provided an optimized formulation, with 16.50% of X1 and 0.2% of X2 with the highest desirability. An in vivo drug retention time study was performed for the optimized formulation in Wistar rats. The results of the optimization process demonstrated that the selected gel formulation exhibited desirable characteristics, including gelation near body temperature, good gel strength, suitable viscosity, and sustained drug release. The optimized formulation displayed significantly higher drug retention, lasting about 5 h, versus the plain poloxamer gel formulation. Hence, it was concluded that the optimized formulation will remain affixed at the site of application for a significant time after intranasal administration and consequently sustain the release of the drug. The optimized formulation was found to be stable during the stability studies. The developed dosage form may improve patient compliance, enhance nasal drug residence, and offer sustained drug release. However, further clinical studies are necessary to validate these findings.

6.
Heliyon ; 10(4): e26126, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38384558

ABSTRACT

Poly-herbal therapies for chronic diseases like diabetes mellitus (DM) have been practiced in south Asia for centuries. One of such therapies comprises of Hordeum vulgare, Elettaria cardamomum and Cicer arietinum that have shown encouraging therapeutic potential in the treatment of diabetes and obesity. Therefore, poly-herbal granules (PHGs) of this formula were developed and investigated for their anti-diabetic and anti-obesity potential in obese-diabetic rats. The developed PHGs were chemical characterized and the virtual molecular docking was performed by Discovery studio visualizer (DSV) software. For in-vivo experiment, obesity in rats was induced with high-fat high-sugar diet. After that, diabetes was induced by alloxan monohydrate 150 mg/kg i.p. injection. The diseased rats were treated with PHGs at 250, 500 and 750 mg/kg/day for four weeks. GC-MS analysis of PHGs demonstrated the presence of 1,3-Benzenedicarboxylic acid bis(2-ethylhexyl) ester and 1,2-Benzenedicarboxylic acid di-isooctyl ester and phenol, 2,4-bis(1,1-dimethylethyl). Molecular docking of these compounds demonstrated higher binding energies with receptor than metformin against α-amylase and α-glucosidase. PHGs exhibited a decline in body weight, HbA1c, hyperlipidemia, hyperglycemia, and insulin resistance in diseased rats. The histopathological examination revealed that PHGs improved the alloxan-induced damage to the pancreas. Furthermore, PHGs increased the SOD, CAT and GSH while and the decreased the level of MDA in the liver, kidney and pancreas of diseased rats. Additionally, the PHGs had significantly downregulated the TNF-α and NF-κB while upregulated the expression of NrF-2. The current study demonstrated that the PHGs exhibited anti-diabetic and anti-obesity potential through amelioration of oxidative stress, NF-κB, TNF-α, and NrF-2 due to the presence of different phytochemicals.

7.
Biomed Pharmacother ; 172: 116193, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301419

ABSTRACT

Balanites aegyptiaca (B. aegyptiaca) is an African herb with traditional medical applications. Various pathogenic factors cause hepatic fibrosis and require novel treatment alternatives. Nanoformulation-based natural products can overcome the available drug problems by increasing the efficacy of natural products targeting disease markers. The current study investigated B. aegyptiaca methanolic extract using high-pressure liquid chromatography (HPLC), and B. aegyptiaca/chitosan nanoparticles were prepared. In vivo, evaluation tests were performed to assess the curative effect of the successfully prepared B. aegyptiaca/chitosan nanoparticles. For 30 days, the rats were divided into six groups, typical and fibrosis groups, where the liver fibrosis groups received B. aegyptiaca extract, silymarin, chitosan nanoparticles, and B. aegyptiaca/chitosan nanoparticles daily. In the current investigation, phenolic molecules are the major compounds detected in B. aegyptiaca extract. UV showed that the prepared B. aegyptiaca /chitosan nanoparticles had a single peak at 280 nm, a particle size of 35.0 ± 6.0 nm, and a negative charge at - 8.3 mV. The animal studies showed that the synthetic B. aegyptiaca/chitosan nanoparticles showed substantial anti-fibrotic protective effects against CCl4-induced hepatic fibrosis in rats when compared with other groups through optimization of biochemical and oxidative markers, improved histological changes, and modulated the expression of Col1a1, Acta2 and Cxcl9 genes, which manage liver fibrosis. In conclusion, the current research indicated that the prepared B. aegyptiaca/chitosan nanoparticles improved histological structure and significantly enhanced the biochemical and genetic markers of liver fibrosis in an animal model.


Subject(s)
Balanites , Chitosan , Nanoparticles , Rats , Animals , Balanites/chemistry , Chitosan/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Liver Cirrhosis/drug therapy
8.
J Ethnopharmacol ; 323: 117716, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38190955

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Mimosa caesalpiniifolia (Sansão-do-Campo) is a native species of the caatinga in northeastern Brazil that has been studied for its potential anti-inflammatory and antidepressant activity. It is popularly consumed as a medicinal plant and its pharmacological benefits are evidenced in the literature. AIM OF THE STUDY: The present work was carried out to promote the chemical profile and evaluate the pharmacological activity of the dry extract and the ethyl acetate fraction obtained from the dry leaves of Mimosa caesalpiniifolia. MATERIALS AND METHODS: The leaves were collected in the municipality of Alfenas-MG and subjected to drying, followed by division in a knife mill. The preparation of the dry extract was carried out by the extraction method using simple percolation and the fraction was obtained by liquid-liquid partition. Part of the extractive solution was concentrated in a rotary evaporator followed by a drying process using the spray technique with the addition of colloidal silicon dioxide. The dry extract (33.33%) showed a higher yield in mass when compared to the yield of the ethyl acetate fraction (19.67%). The in vivo pharmacological evaluation was conducted with a total of 82 male Wistar rats that underwent cecal ligation and perforation surgery to induce the inflammatory process. One week after surgery, these animals were treated for 7 days with the dry extract and the ethyl acetate fraction and submitted to behavioral tests (open field and forced swimming). RESULTS: The chemical results were obtained through analysis by HPLC-PDA coupled to a mass spectrometer, enabling the verification of the presence of phenolic acids, flavonoids, aglycones, and glycosides, in addition to tannins. This corroborates with data present in the literature for the genus Mimosa sp. Some compounds had their structure determined, where they were identified as catechin (m/z 288.97), cassiaocidentalin A (m/z 560.75), and procyanidin B2 [(epi)catechin-(epi)catechin; m/z 576.83)]. It was found that the animals that were submitted to the treatment did not present statistically significant results, demonstrating that the pharmacological action evaluated in the test was not highlighted in this type of experiment. The groups that underwent treatment had an aggravated locomotor activity. CONCLUSIONS: The results found with the chemical study contributed to the knowledge of the plant species studied. On the other hand, further studies are needed to provide a better understanding of the pharmacological evaluation of Mimosa caesalpiniifolia.


Subject(s)
Acetates , Catechin , Mimosa , Rats , Animals , Rats, Wistar , Mimosa/chemistry , Plant Extracts/pharmacology , Plant Extracts/analysis , Plant Leaves/chemistry
10.
Genet Res (Camb) ; 2024: 6432560, 2024.
Article in English | MEDLINE | ID: mdl-38292516

ABSTRACT

Four parental genotypes of okra were crossed in complete diallel design to study the direction and extent of relative heterosis and heterobeltiosis for yield and its associated traits for utilization of existing genetic diversity to develop heterotic F1 hybrids in okra. The additive genetic component (D) was significant in all studied traits except average pod weight. Nonadditive (H1 and H2) components were found to be significant in all studied traits. However, the values of the dominant effect (H1) were smaller than the D components for no. of nodes/plant, no. of pods/plant, weight of medium pods, weight of large pods, and total fresh pod yield. The maximum significant MP heterosis in the desirable direction (149.9%) was recorded for the weight of large pods/plot. The maximum significant heterobeltiosis in the desirable direction (120.1%) was recorded for the weight of small pods/plot followed by total fresh pod yield (107.4%), the weight of large pods/plot (104.9%), weight of medium pods/plot (92.1%), average pod weight (51.8%), number of pods/plant (38.4%), and plant height (34.3%). It could be concluded that plant height, average pod weight, and the number of branches could be considered for the development of elite hybrids (heterosis breeding) or inbred lines (pure line selection) in succeeding generations. Therefore, these parameters can be considered for selecting genotypes to improve the pod yield of okra. The superior crosses identified through heterosis analysis were Egyptian Balady × Line 4.1.18 (30.8 ton/ha), Line 4.1.18 × Egyptian Balady (29.8 ton/ha), Dwarf Green Long Pod × Line 4.1.18 (28.3 ton/ha), and Egyptian Balady × Dwarf Green Long Pod (27.6 ton/ha) as these crosses had high performance as well as significant and higher estimates of heterobeltiosis for fruit yield per plant and yield attributing other characters.


Subject(s)
Abelmoschus , Hybrid Vigor , Hybrid Vigor/genetics , Abelmoschus/genetics , Saudi Arabia , Crosses, Genetic , Plant Breeding
11.
Dev Comp Immunol ; 153: 105135, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38185264

ABSTRACT

This study aimed to explore the antimicrobic potential of mucus samples collected from Cyprinus carpio and identify the specific antimicrobial peptides responsible for its activity. The crude extract was tested against various bacterial and fungal pathogens, and its protein content and profile were analyzed. Purification steps, including gel filtration chromatography, were employed to isolate the most active fraction (peak IV), which was further identified via liquid chromatography and mass spectroscopy. The results revealed varying degrees of antimicrobial activity of the crude extract against different bacterial and fungal strains, with Leclercia adecarboxylata, Candida glabrata, and Candida parapsilosis showing the highest susceptibility. SDS-PAGE analysis demonstrated the existence of multiple low molecular weight protein bands in the crude extract, while fraction IV obtained from gel filtration chromatography exhibited the strongest antimicrobial activity. Peak IV displayed a range of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentration (MFC) values against the tested pathogens, spanning from 0.038 to 4.960 mg/mL. Further investigation identified the purified peptide derived from peak IV as G-type lysozyme 2, characterized by a molecular weight of 21 kDa. These findings shed light on the existence of a highly effective antimicrobial peptide, G-type lysozyme 2, within the mucus of Cyprinus carpio. This peptide demonstrates notable activity against diverse bacterial and fungal pathogens. The insights from this study enhance our understanding of the fish's antimicrobial defense mechanisms and hold promise for developing novel antimicrobial agents.


Subject(s)
Anti-Infective Agents , Carps , Animals , Muramidase , Anti-Infective Agents/pharmacology , Bacteria , Peptides/pharmacology , Complex Mixtures/analysis , Complex Mixtures/pharmacology , Mucus , Microbial Sensitivity Tests
12.
Int J Environ Health Res ; 34(3): 1751-1762, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37535931

ABSTRACT

Three hundred samples, including meat from the slaughtered carcass and water, air samples, and swabs from the floor, wall, and employees' hands, were collected from five municipal abattoirs spread across several Egyptian provinces. The Escherichia coli was isolated from floor swabs, meat, air, wall, hand, and water samples. Serotyping of the recovered isolates clarified the presence of various serotypes, including enterohemorrhagic serotypes (O111: H4, O128: H2, and O127: H6) and enterotoxigenic serotypes (O44: H18 and O125: H21). The isolates were resistant to cefotaxime (100%), amoxiclav (80%), then rifampin (66.7%). The stx1 gene, stx2 gene, eaeA gene, blaCMY2 gene and iss gene were detected in 10-80 % of the isolates. Nanosilver (AgNPs) showed that 12.5 ppm was the lowest concentration that prevented bacterial growth. It was observed that 12% of workers wore a clean white coat, only 24% washed their hands between activities during work, only 14% used soap for hand washing, and 42% utilized the same knife for meat and its offal.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Humans , Escherichia coli/genetics , Egypt , Abattoirs , Meat/microbiology , Water , Escherichia coli Proteins/genetics
13.
Heliyon ; 9(12): e22835, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38094064

ABSTRACT

The outburst of the coronavirus into the global arena, first as a respiratory disease and later as a worldwide pandemic and health emergency, pushed the world economic order into complete turmoil and aftermath, posing severe challenges to the financial stability of developing countries like Pakistan. The temporary suspension of economic activities worldwide has resulted in significant disruptions to international supply chains, leading to substantial delays in implementing infrastructure projects associated with the China-Pakistan Economic Corridor (CPEC). The pandemic has further hindered CPEC progress. Building mega-projects, such as the CPEC, is crucial in determining the economic stability of a nation such as Pakistan. Nevertheless, it is essential to consider that the implementation of infrastructure projects can be subject to delays due to the COVID-19 lockdown and travel restrictions. However, it is worth noting that there needs to be more scholarly research available examining the ongoing progress and performance of CPEC projects from a particular perspective. This study aims to assess the impact of the COVID-19 lockdown policy and travel restrictions on CPEC project performances by highlighting the role of socioeconomic and infrastructure development factors. The study will shed light on numerous causes of concerns in project development phases and provide policy recommendations to help CPEC officials reduce project losses and better survival in the event of extreme uncertainty. The data were collected through an online survey from all over Pakistan using self-administered questionnaires with 570 responses from CPEC employees, officials, and professors from management and economic departments. The structural equation modeling (SEM) technique analyzes the problem mentioned above. As per the results of this study, it is evident that the COVID-19 lockdown policy and travel restrictions have a detrimental effect on the construction of the CPEC project. Moreover, it has been observed that the socioeconomic and infrastructure development associated with the CPEC has a notable impact on the performance of the CPEC projects. This paper aims to provide valuable insights to policymakers by examining the management of the COVID-19 pandemic from the perspective of the CPEC.

14.
Biomed Pharmacother ; 167: 115382, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37778271

ABSTRACT

Clivia miniata (Lindl) is a member of the family Amaryllidaceae known for its chemically diverse alkaloids with a wide range of biological activities. Many reports revealed a direct role of oxidative stress in the early stage of Alzheimer's disease (AD). Meanwhile, ß-site amyloid precursor protein cleavage enzyme 1 (BACE-1) is a molecular target for the treatment of AD. We aimed to investigate C. miniata root, bulb, and aerial part chemical profiling, antioxidant, BACE-1, and AChE enzyme inhibitory activities. Results showed that the total root had the most potent radical scavenging activity as compared to the total bulb and aerial part, respectively. Ethanol root extract had the most potent BACE-1 inhibitory activity (IC50 = 0.02 ± 0.001 µg/mL) as compared to the bulb and aerial part (IC50 = 0.93 ± 0.13, 1.80 ± 0.24 µg/mL), respectively. Moreover, the total root extract mitigated AChE enzyme activity more than total bulb and aerial fractions with IC50 values of (0.06 ± 0.02, 0.58 ± 0.3, and 1.89 ± 0.42 µg/mL, respectively. Bioassay-guided acid-base fractionation confirmed superior BACE-1 inhibitory activity of the root fractions particularly, methylene chloride and ethyl acetate fractions with (IC50 values of 0.21 ± 0.60 and 0.01 ± 0.001 µg/mL), respectively. UPLC-MS analysis of ethyl acetate and methylene chloride fractions of C. miniata root led to the identification of eight phenolics and thirteen alkaloids, respectively. Molecular docking studies against BACE-1 protein revealed that lycorine di-hexoside, miniatine, and cliviaaline were the most promising hits. Further investigation of anti-AD potential of the aforementioned small molecules is required.


Subject(s)
Alkaloids , Alzheimer Disease , Amaryllidaceae , Antioxidants/pharmacology , Molecular Docking Simulation , Chromatography, Liquid , Methylene Chloride , Tandem Mass Spectrometry , Alkaloids/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Alzheimer Disease/drug therapy , Plant Components, Aerial , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry
15.
PLoS One ; 18(10): e0293477, 2023.
Article in English | MEDLINE | ID: mdl-37889925

ABSTRACT

The current study was designed to analyze nutritional parameters and to characterize carbapenemase producing-Klebsiella pneumoniae isolates from bovine mastitic cow's milk. Out of 700 milk samples K. pneumoniae was identified by phenotypic and molecular techniques along with their antibiogram analysis and nutritional analysis was performed using the procedure of Association of Official Analytical Chemists. Carbapenemase-producing K. pneumoniae was detected by phenotypic CarbaNP test followed by molecular characterization of their associated resistant genes blaVIM, blaKPC, blaOXA-48, blaNDM, and blaIMP along with insertion sequence common region 1 (ISCR1) and integrons (Int1, Int2, and Int3) genes. Among nutritional parameters, fat content was observed (2.99%) followed by protein (2.78%), lactose (4.32%), and total solid (11.34%), respectively. The prevalence of K. pneumoniae among bovine mastitis was found 25.71%. Antibiogram analysis revealed that more effective antibiotics was ceftazidime (80%) followed by amikacin (72%), while highly resistant antibiotics was Fusidic acid (100%). Distribution of carbapenemase producer K. pneumoniae was found 44.4%. Among carbapenem resistant genes blaKPC was found 11.25%, blaVIM 2.75%, blaNDM 17.5%, and blaOXA-48 7.5%, while blaIMP gene was not detected. Furthermore, distribution of ISCR1 was found 40%, while integron 1 was found 61.2% followed by integron 2 (20%), and integron 3 (5%). In conclusion, the recent scenario of carbapenemase resistant K. pneumoniae isolates responsible for mastitis may affect not only the current treatment regime but also possess a serious threat to public health due to its food borne transmission and zoonotic potential.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Mastitis, Bovine , Female , Animals , Cattle , Klebsiella pneumoniae , Milk/metabolism , Mastitis, Bovine/genetics , Bacterial Proteins/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , DNA Transposable Elements , Microbial Sensitivity Tests , Klebsiella Infections/drug therapy , Klebsiella Infections/genetics , Klebsiella Infections/veterinary
16.
Front Plant Sci ; 14: 1225612, 2023.
Article in English | MEDLINE | ID: mdl-37662142

ABSTRACT

Paris polyphylla Smith (Melanthiaceae) family, which is native to the Himalayan region, has received a lot of attention recently due to its extensive history of usage in traditional medicine. The production of steroidal saponin from callus suspension cultures of P. polyphylla was observed in the current study. The current study attempted to develop a P. polyphylla plant callus suspension culture through optimization of cultivation technique for callus suspension, quantification of total phenolic components and estimation of the extract's antioxidant activity. A light-yellow callus was formed within six weeks of cultivating rhizomes on Murashige and Skoog (MS) media supplemented with Thidiazuron (TDZ). Furthermore, the effect of TDZ, Methyl Jasmonate (MeJA), and Yeast Extract (YE) on callus growth, steroidal saponin (dioscin and diosgenin), total phenolic content, total flavonoids, total tannin, and total antioxidant activity was also measured. The medium containing 0.5 µM TDZ depicted the maximum callus biomass (2.98 g fresh weight). Significantly high phenolic and tannin content was observed in the MS medium containing 50 µM MeJA, whereas, no significant increase was observed in total tannin production in any treatment. Three in vitro assays, DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis (3-ethylbenzothiazoline- 6-sulfonic acid)) and FRAP (ferric ion reducing antioxidant potential) and FC (Folin-Ciocalteu), were used to assess antioxidant potential of callus. Maximum antioxidant analysis reported in 1.0 µM TDZ (6.89 mM AAE/100 g) containing medium followed by 50 µM MeJA (6.44 mM AAE/100 g). The HPLC analysis showed a high presence of dioscin and diosgenin (5.43% and 21.09%, respectively) compared to the wild sample (2.56% and 15.05%, respectively). According to the results, callus produced on media supplemented with 50 µM MeJA have significant phenolic contents and elevated antioxidant activity; nevertheless, callus growth was greater in the presence of 0.5 µM TDZ. The findings of the current study have commercial implications since greater biomass production will result in active phytochemicals that the pharmaceutical and nutraceutical sectors are in need desperately.

17.
Chem Biodivers ; : e202300970, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37715949

ABSTRACT

BACKGROUND: Alpinia calcarata (AC) Roscoe of Zingiberaceae popularly known as lesser galangal has a widespread occurrence in China, India, Sri-Lanka, Bangladesh, Malaysia, Indonesia and Thailand. Essential oil (Eoil) was obtained from leaves/rhizomes of AC via hydro-distillation process. METHODS: To identify chemical ingredients in oil from leaves/rhizomes of AC through GC/MS technique for volatile components and their anti-oxidant, inflammatory/diabetic activities. RESULTS: The 38 and 65 components were found to make up 99.9 and 99.6 %, respectively in total of Eoil composition of AC leaves/rhizomes. Key chemical constituents were eucalyptol (28.7 % in leaves; 25.4 % in rhizomes), camphor (12.8 % in leaves; 4.2 % in rhizomes), and carotol (9.8 % in leaves; 5.6 % in rhizomes) found in oil of AC leaves/rhizomes. Colorimetric assay showed anti-oxidant activities in leaves and rhizomes are IC50 =71.01±0.71 µg/mL and IC50 =73.83±0.49 µg/mL, respectively in the Eoils. Eoils had high anti-oxidant capabilities in IC50 -values of AC-L-Eoil=43.09±0.82&AC-Rh-Eoil=68.11±0.87 in reducing power in µg/mL was found. Albumin test of rhizome oil had IC50 -values of 15.19±0.25 µg/mL. Concentrations range of 7.81 µg/mL and 250 µg/mL in the Eoils of AC leaves and rhizome, respectively by α-glucosidase inhibition assay. CONCLUSION: Our findings demonstrated that leaf oil was slightly more promising results than rhizome oil of AC extract, which was ultimately showed medicinal potential of secondary metabolites with anti-oxidant, diabetic/inflammatory activities. Further, Eoils of AC have a wide range of pharmacological potential and promising anti-diabetic effects.

18.
Am J Transl Res ; 15(7): 4504-4520, 2023.
Article in English | MEDLINE | ID: mdl-37560206

ABSTRACT

OBJECTIVES: Diabetic nephropathy (DN) is one of the most prevalent secondary complications associated with diabetes mellitus. Decades of research have implicated multiple pathways in the etiology and pathophysiology of diabetic nephropathy. There has been no reliable predictive biomarkers for the onset or progression of DN and no successful treatments are available. METHODS: In the present study, we explored the datasets of RNA sequencing data from patients with Type II diabetes mellitus (T2DM)-induced nephropathy to identify a novel gene signature. We explored the target bioactive compounds identified from Azanza garckeana, a medicinal plant commonly used by the traditional treatment of diabetes nephropathy. RESULTS: Our analysis identified lymphotoxin beta (LTB), SRY-box transcription factor 4 (SOX4), SOX9, and WAP four-disulfide core domain protein 2 (WFDC2) as novel signatures of T2DM-induced nephropathy. Additional analysis revealed the pathological involvement of the signature in cell-cell adhesion, immune, and inflammatory responses during diabetic nephropathy. Molecular docking and dynamic simulation at 100 ns conducted studies revealed that among the three compounds, Terpinen-4-ol exhibited higher binding efficacies (binding energies (ΔG) = -3.9~5.5 kcal/mol) against the targets. The targets, SOX4, and SOX9 demonstrated higher druggability towards the three compounds. WFDC2 was the least attractive target for the compounds. CONCLUSION: The present study was relevant in the diagnosis, prognosis, and treatment follow up of patients with diabetes induced nephropathy. The study provided an insight into the therapeutic application of the bioactive principles from Azanza garckeana. Continued follow-up invitro validations study are ongoing in our laboratory.

19.
Biomed Pharmacother ; 165: 115214, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37516016

ABSTRACT

Diabetes mellitus is a rapidly spreading global metabolic disorder that has serious social, health, and economic consequences. Herein, we have evaluated in vivo antidiabetic and antihyperlipidemic effects of myrrhanone-B and myrrhanol-B (isolated from Commiphora mukul Hook). We observed that treatment with myrrhanone-B and myrrhanol-B at a dose of 5 and 10 mg/kg body weight for 21 days significantly improved body weight loss, water consumption, and the concentration of blood glucose level (BGL) in alloxan (120 mg/kg) induced diabetic mice, which indicates that the compounds possess strong anti-diabetic activities. In the biochemical analysis, these compounds improved an abnormal level of total cholesterol (TC), triacylglycerol (TG), and low-density lipoprotein cholesterol (LDL-C) to a normal level and increased the high-density lipoprotein cholesterol level (HDLC). Later, drug target of compounds was predicted through in-silico docking which shows that these compounds nicely fit in the active site of α-glucosidase enzyme and mediates excellent interactions with the catalytic residues, Asp214 and Asp349. The in-silico results were confirmed by in-vitro testing of myrrhanone-B and myrrhanol-B against α-glucosidase where both the compounds exhibited excellent inhibitory potency with IC50 values of 19.50 ± 0.71, and 16.11 ± 0.69 µM, respectively. Furthermore, mechanistic study was conducted to observe their binding mechanism, which reflect that myrrhanol-B has mixed type of inhibition (ki = 12.33 ± 0.030 µM), while myrrhanone-B demonstrates competitive type of inhibition (ki =14.53 ± 0.040 µM).


Subject(s)
Commiphora , Diabetes Mellitus, Experimental , Animals , Mice , alpha-Glucosidases , Cholesterol , Commiphora/chemistry , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Resins, Plant/chemistry
20.
J Cell Mol Med ; 27(12): 1735-1744, 2023 06.
Article in English | MEDLINE | ID: mdl-37257043

ABSTRACT

The present study aimed to identify the possible protective effect of diacerein (DIA) on gentamicin (GNT)-induced parotid toxicity in rats. DIA was administered in the presence and absence of GNT. Thirty-two Wistar adult male rats were randomly arranged into four groups: control, DIA (50 mg/kg/day), GNT (100 mg/kg) and GNT+DIA groups for 8 days. Parotid oxidative stress parameters, besides inflammatory and apoptotic biomarkers, were evaluated. Salivary flow rate, transient receptor potential canonical 1 (TRCP1), and C/EBP homologous protein (CHOP) in parotid tissue were measured. A parotid histopathological examination and an interleukin-1 beta (IL-1ß) immunohistochemical study were also performed. GNT significantly increased parotid oxidative stress, inflammatory, apoptotic and CHOP biomarkers with decreased salivary flow rate and TRCP1 level. A histopathological picture of parotid damage and high IL-1ß immunoexpression were detected. DIA significantly normalized the distributed oxidative, inflammatory and apoptotic indicators, CHOP and TRCP1, with a prompt improvement in the histopathological picture and a decrease in IL-1ß immunoexpression. These results reported that DIA protects against GNT-induced parotid toxicity via modulation of TLR4/NF-κB/IL-1ß and TRPC1/CHOP signalling pathways.


Subject(s)
NF-kappa B , Toll-Like Receptor 4 , Rats , Male , Animals , NF-kappa B/metabolism , Interleukin-1beta/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Gentamicins/adverse effects , Rats, Wistar , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL
...